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Abstract: Phase noise is one of the most important specifications of microwave oscillators. External factors such as mechanical
vibrations increase the phase noise of the oscillator. A novel technique is introduced to reduce vibration-induced phase noise
using inter-injection locking of two coupled oscillators. Two similar oscillators with equal free running frequencies are
chosen and are subjected to sinusoidal vibration. The mechanical configuration is such that vibration sensitivity vector
increases the frequency of one oscillator and decreases the other one’s frequency of oscillation. Coupling these two oscillators
using inter-injection locking, the common after-lock frequencies of both oscillators would be equal to the free running
frequency of oscillation; as such the influence of vibration on the oscillators is reduced. Experimental measurements are
carried out to confirm the proposed technique.
1 Introduction

Mechanical vibrations increase the phase noise of a
microwave oscillator. This may be because of several
parameters like resonator installation, elastic properties of
resonator and other mechanical parts of the oscillator.
Experimental studies have shown that the sensitivity of a
resonator to either acceleration or vibration is a vector
quantity. Vibration sensitivity of oscillators is explained in
detail in [1–4]. If an oscillator with the acceleration
sensitivity vector of Γ is subjected to the acceleration vector
a, its oscillation frequency will shift. Then, the oscillation
frequency of vibrating oscillator is given by the following
equation

f = f0(1+ G a) (1)

where f0 is the frequency of the oscillation without
acceleration. Equation (1) shows that if the acceleration
sensitivity vector and the applied acceleration vector are in
the same direction, the oscillation frequency shift will be
maximised. The change in frequency depends on the sign
of the inner product of the second term in (1).
2 Sinusoidal vibration study

2.1 Time domain study

A usual way of vibration study is assuming sinusoidal
variation for the acceleration vector

a = A cos 2pfmt
( ) (2)
Then, the instantaneous frequency of an oscillator exposed to
this vibration varies as in the following equation

f (t) = f0 1+ (G A) cos 2pfmt
( )( ) = f0 + Df cos 2pfmt

( )
(3)

Here, Δf is the maximum frequency deviation of the oscillator
because of applied vibration and is expressed in terms of
vector components as in the following equation

Df = f0 Gx Ax + Gy Ay + Gz Az

( )
(4)

Using (3), the output voltage of the oscillator changes in the
following equation

V (t) = V0 cos 2pf0t +
Df

fm

( )
sin 2pfmt

( )( )
(5)

Equation (5) shows that if an oscillator is subjected to a
sinusoidal vibration, the output voltage of the oscillator will
be a frequency modulated signal.

2.2 Frequency domain study

Using the Bessel functions, the output voltage of the vibrating
oscillator can be expanded in the following equation

V (t) = V0[J0(b) cos 2pf0t
( )

+ J1(b) cos 2p f0 + fm
( )

t
( )

+ J1(b) cos 2p f0 − fm
( )

t
( )

+ J2(b) cos 2p f0 + 2fm
( )

t
( )

+J2(b) cos 2p f0 − 2fm
( )

t
( )+ · · ·]

(6)
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Fig. 1 Equivalent circuit of a vibrating oscillator with external
injection
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In which β is the modulation index and is given by the
following equation

b = Df /fm = (G A)f0/fm (7)

Equation (6) shows that sidebands are induced on the
left-hand and right-hand sides at integer multiples of fm
offsets around the carrier. The relative levels (in dB) of
these sidebands with respect to the carrier are

L(dBc) = 20Log Jn(b)/J0(b)
( )

(8)

For a low-modulation index (β < 0.1), that is, narrowband
FM, one can use the approximations J0(b) � 1, J1(b) �
b/2 and ignore higher order sidebands for n≥ 2.
So for a low-modulation index, the sidebands are only

induced at the offset fm from the carrier for which their
relative levels are

L(dBc) = 20Log
(G a)f0
2fm

( )
= 20Log

Df

2fm

( )
(9)

3 Inter-injection locking of coupled vibrating
oscillators

In a similar way, random vibration increases the phase noise
of an oscillator. The increased phase noise of oscillators can
reduce the performance of the receivers and transmitters in
many applications especially in mobile systems. Several
methods have been proposed to reduce the undesirable
effects of vibration on the oscillators [5, 6]. These
techniques include selecting low-vibration-sensitive
materials, active vibration cancellation schemes [6], using
dampers [7–9], phase locking of references and
bootstrapping of several oscillators [10].
Injection and inter-injection locking of oscillators are

effective techniques to synchronise coupled oscillators
either unilaterally or mutually. The equations governing the
dynamic and steady-state behaviour of these techniques
have been studied before in [11, 12], along with phase
noise in these synchronised oscillators [13, 14, 19].
In this section, we will show that proper inter-injection

locking of two vibrating microwave oscillators can reduce
the effect of vibration on them. For this purpose, two
similar oscillators with same free running frequencies are
subjected to a sinusoidal vibration with vibration frequency
fm. The vibration sensitivity vector of the first oscillator has
the same direction as the applied acceleration vector; Γ1 =
ca, and the vibration sensitivity vector of the second
oscillator is in the opposite direction to this vector; Γ2 =
−ca. Hence, for the oscillators using Γ1 = −Γ2 =Γ, one can
write

Df1 = −Df2 = f0G a = f0 G| | a| | (10)

If the two oscillators are similar, instantaneous frequencies of
the vibrating oscillators become

f1 = f0 + Df cos 2pfmt
( )

(11a)

f2 = f0 − Df cos 2pfmt
( )

(11b)

Prior to study of the inter-injection locking of coupled
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vibrating oscillators, a circuit model for the vibrating
oscillator is extracted.

3.1 Circuit model for a vibrating oscillator

First consider the series resonant circuit shown in Fig. 1,
which represents the vibrating oscillator along with the
active element and external injection source [15]. We put
this external source in order to obtain formulae that will be
used in the next section.
In this circuit, ΔL is time varying inductance that models

the frequency variations of the oscillator because of
vibration and Vinj represents the external injection from the
mutually coupled oscillator to this oscillator. The phasor �A
stands for the loop current. The free running frequency of
oscillation without any injection and vibration, is
f0 = 1/2p

				
LC

√
. By exposing this oscillator to sinusoidal

vibrations the instantaneous frequency changes to

f (t) = f0 + Df cos (vmt) =
1

2p
												
(L+ DL)C

√ (12)

assuming (DL/L) ≪ 1 hence

1

2p
												
(L+ DL)C

√ � f0 1− DL

2 L

( )
= f0 + Df cos 2pfmt

( )

⇒ DL = −2 LDf

f0
cos 2pfmt

( )
(13)

We use this circuit model to explore the dynamic behaviour of
two mutually coupled oscillators under vibration.
Defining time varying voltage phasor for output voltage of

the vibrating oscillator is shown in Fig. 1, as

V = RLA(t)e
ju(t) = RLA(t)e

j 2pf0t+b sinvmt( ) (14)

Then, writing the KVL in the oscillator loop [16], one obtains
by the following equation

dV

dt
= pf0

Q
1+ Df

f0
cosvmt

( )

× Vinj + j2pf0 1+ Df

f0
cosvmt

( )(

− 2pf0
Q

1+ Df

f0
cosvmt

( )
1− RD

RL

( ))
V

(15)

Separating the real and imaginary parts of this equation and
1103
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assuming Vinj = 1RLAinj(t)e

juinj(t) one obtains the following
equation

du

dt
= 2pf0 + 2pDf cosvmt

( )+ 1

2Q

Ainj

A

2pf0 + 2pDf cosvmt
( )

sin uinj − u
( )

dA

dt
= − A

Q
2pf0 + 2pDf cosvmt
( )

1− RD

RL

( )

+ 1

2Q

Ainj

A
2pf0 + 2pDf cosvmt
( )

cos uinj − u
( )

(16)

Without any external injection, Ainj = 0, from the phase
equation we conclude that the FM sideband levels are
smaller than the carrier by a factor γsingle = Δf/2fm
3.2 Inter-injection locking of coupled oscillators
under vibration

Now consider two similar oscillators with same free running
frequencies coupled with each other. A circuit model for these
two vibrating mutually coupled oscillators is proposed in
Fig. 2 [15]. These two oscillators have been mutually
coupled using a passive reciprocal circuit like an attenuator
and a transmission line. In this circuit, ɛ and j are the
magnitude and the phase of the coupling coefficient of the
coupling network, respectively, and the output voltages of
the vibrating oscillators are

V1(t) = RLA1(t)e
ju1(t) and V2(t) = RLA2(t)e

ju2(t)

Assume that the acceleration vector and the acceleration
sensitivity vector are in the same direction for the first
oscillator and are in the opposite direction for the second
one. Using (11) and (13) we have
Fig. 2 Circuit model for two mutually coupled vibrating
oscillators
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DL1 = −DL2 =
−2 LDf

f0
cos 2pfmt

( )
Assuming that a

small part of the voltage of one oscillator is injected into
the other oscillator (weak coupling), then for coupling
phase equal to 2π, one obtains

Vinj,1(t) = 1RLA2(t)e
ju2(t)

Vinj,2(t) = 1RLA1(t)e
ju1(t) (17)

For each oscillator, a differential equation [similar to (15)]
describes the time variations of complex phasor V of the
oscillator. Substituting voltages V1 and V2 from (17) in (15)
and separating real and imaginary parts of these equations
one obtains four coupled non-linear differential equations
governing the amplitudes and the phases of these oscillators
by the following equations

du1
dt

= 2pf0 + 2pDf cosvmt
( )+ 1

2Q

A2

A1

× 2pf0 + 2pDf cosvmt
( )

sin u2 − u1
( ) (18a)

du2
dt

= 2pf0 − 2pDf cosvmt
( )+ 1

2Q

A1

A2

× 2pf0 − 2pDf cosvmt
( )

sin u1 − u2
( ) (18b)

dA1

dt
= −A1

Q
2pf0 + 2pDf cosvmt
( )

1− RD

RL

( )

+ 1A2

2Q
2pf0 + 2pDf cosvmt
( )

cos u2 − u1
( ) (18c)

dA2

dt
= −A2

Q
2pf0 − 2pDf cosvmt
( )

1− RD

RL

( )

+ 1A1

2Q
2pf0 − 2pDf cosvmt
( )

cos u1 − u2
( ) (18d)

where Q stands for loaded quality factor of the oscillators;
Q = ω0L/RL.
However, since the injection level in the oscillator loop is

small (1 ≪ 1), the amplitudes do not change considerably
and the dynamics of the oscillators can be well described
only by the phase differential equations [15, 16]. By this
assumption, the phase equations are decoupled from
amplitude equations. As such, the phase variations of θ1(t)
and θ2(t) are explained by the following equations:

du1
dt

= 2pf0 + 2pDf cosvmt
( )+ 1

2Q

× 2pf0 + 2pDf cosvmt
( )

sin u2 − u1
( ) (19a)

du2
dt

= 2pf0 − 2pDf cosvmt
( )+ 1

2Q

× 2pf0 − 2pDf cosvmt
( )

sin u1 − u2
( ) (19b)

Subtracting (19b) from (19a) and defining the phase
difference ψ(t) = θ1(t) − θ2(t), we obtain

dc(t)

dt
= 4pDf cos vmt

( )− 1

Q
2pf0 sinc(t) (20)

Since ψ(t) is small for oscillators under vibration, the sin(ψ(t))
T Microw. Antennas Propag., 2013, Vol. 7, Iss. 13, pp. 1102–1112
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term can be approximated by its argument, hence, the solution
of (20) becomes

c(t) = a cos vmt
( )+ z sin vmt

( )
(21)

In which

a = Kz

fm
, z = 4pfmDf

K2 + f 2m

where K is an auxiliary variable and is equal to K = (εf0/Q).
For small ψ(t) (18a) is rewritten as

du1(t)

dt
= 2pf0 + 2pDf cosvmt

( )
− 1

2Q
2pf0 + 2pDf cosvmt
( )

c(t)
(22)

After substituting (21) in (22) we arrive at the following
equation

du1(t)

dt
= 2pf0 −

p1aDf

2Q

( )[ ]

+ 2pDf − 1paf0
Q

( )
cos vmt

( )− 1zpf0
Q

sin vmt
( )[ ]

− 1apDf

2Q
cos 2vmt

( )+ 1zpDf

2Q
sin 2vmt

( )[ ]
(23)

In (23), the first bracket represents the after lock carrier
frequency of the vibrating oscillator, whereas the second
and third brackets are representing the generated sidebands
at fm and 2fm offset from the carrier, respectively. Since
Df ≪ f0, we conclude that the sidebands at 2fm are much
smaller than those at fm, hence, we consider only the f0 + fm
and f0− fm sidebands afterwards. To calculate the amplitude
of these sidebands we rewrite the terms in the second
bracket of (23) in a closed sinusoidal form

2pDf − 1paf0
Q

( )
cos vmt

( )− 1pzf0
Q

sin vmt
( )

= gcoupled cos vmt + h
( ) (24)
Fig. 3 Reduction factor (dB) against modulation frequency (Hz)
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Using simple trigonometric relations, one obtains the
following equation

gcoupled = 2pDf

														
1− K2

K2 + f 2m

√
= 2pDf fm									

K2 + f 2m
√ (25)

Rewriting the simplified form of (23) (neglecting the
sidebands induced at 2fm) we arrive at the following equation

du1(t)

dt
= 2pf0 −

1pDf

2Q

( )
+ gcoupled cos (vmt + h) (26)

As is apparent from (26), the output voltage of the first
oscillator (and similarly that of the second one) is an FM
modulated signal with a modulation index of βcoupled =
(γcoupled/ωm).
Assuming narrowband FM in the same manner as

described in Section 2, the level of the sidebands induced at
f0 + fm and f0− fm relative to the carrier after inter-injection
locking is obtained by the following equation

Lcoupled(dBc) = 20Log
gcoupled
2vm

( )

= 20Log
Df

2
									
K2 + f 2m

√
( )

(27)

Now, we should compare the level of the induced sidebands
at fm offset from the carrier in the coupled vibrating oscillators
with that of a single vibrating oscillator. We define reduction
factor as the relative difference of sidebands between these
two cases, using (9) and (27) we have

reduction factor (dB) = 20Log
fm									

K2 + f 2m
√

( )
(28)

The reduction factor is plotted in Fig. 3 for a 1 GHz oscillator
with Q = 50 for two coupling factors of ɛ = 0.2, against
modulation frequency. It is easy to show that the second
oscillator has the same spectrum as the first oscillator.
As is apparent from Fig. 3, after inter-injection locking of

two vibrating oscillators, induced sidebands at f0 + fm and
f0 – fm become very small.
1105
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Fig. 5 x- and y-axes are defined in the plane of PCB and z-axis is
defined perpendicular

a DRO’s cordinates
b Three ways for vibrating two mutually coupled DROs (x, y and z,
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An intuitive interpretation for the reason of spurious

reduction can be explained as the following:
We have two oscillators if there were no coupling between

them the effect of vibration is pulling up the frequency of one
of these oscillators and pulling down the other exactly by the
same amount. Now, establishment of a coupling between
these two oscillators causes them to pull each other
oppositely whereas the common frequency of oscillation
remains constant equal to f0 which is the average of f0 + fm
and f0− fm that is f0 [15]. In other words, the oscillators are
not free as before; each oscillator is forced to change the
frequency of the other in the opposite direction of the
acceleration vector.
In the real world, the spectrum of the vibration is usually

spread over a frequency range; by using the proposed
method, the phase noise of the oscillators around the carrier
will be reduced in a similar manner.

4 Measurement results

In this section, the experimental measurements on microwave
vibrating oscillators using inter-injection locking method will
be explained. We used two similar dielectric resonator
oscillators at 10 GHz frequency band for this purpose. The
dielectric resonator oscillators (DRO) are fabricated using
FMM5201 monolithic microwave integrated circuit (MMIC),
from Eudyna, which is a dual element GaAs FET and one
element is used for our DR oscillator [17]. This MMIC shows
negative resistance in a broad frequency range from 9.75 to
11.5 GHz. The block diagram of the oscillator is shown in
Fig. 4. Indeed, we used ready DROs from low noise block
(LNB) down converter of commercial satellite receivers.
Three axes can be defined for one DRO according to the

mounting plane of the dielectric resonator. The x- and
y-axes are defined in the plane of PCB and z-axis is defined
perpendicular to it (see Fig. 5a). Measurements show that
the acceleration sensitivity of the DRO is much greater in
z-axis compared with the x- and y-axes. For example, the
acceleration sensitivity for the z-axis in a DRO can be an
order of magnitude greater than the other axes [18].
The two oscillators are mutually coupled as depicted in

Fig. 6. The magnitude of coupling coefficient is fixed and
determined by the coupling factors of directional couplers,
which are 10 dB couplers here. However, a line stretcher
was used to adjust the phase of the coupling to multiples of
360°. We fixed these oscillators in several configurations
(Fig. 5b) and vibrated them together. The oscillators are
vibrated using a standard shaker system. The shaker is a
computer controlled system whose acceleration frequency
and amplitude are controllable from 100 Hz to 10 kHz and
from 1 to 100 g’s, respectively. This shaker exerts the
Fig. 4 Block diagram of the GaAs FET MMIC oscillator

respectively)
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Fig. 6 Block diagram of two inter-injection locked oscillators
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defined acceleration in the direction perpendicular to its top
sheet where the oscillators’ fixture is tightly fixed. The
direct ports of the couplers are connected to the spectrum
analyser and the phase noise measurement system.
Since the oscillators are not stable enough to read sideband

levels directly from the spectrum analyser, we used a phase
noise measurement system based on delay-line frequency
discrimination technique to extract the spurious levels of
vibrating oscillators [19]. The block diagram of the phase
noise measurement system is shown in Fig. 7. In our
experiments, the absolute value of spurious is not
important, but relative reduction of this spurious before and
after inter-injection locking of oscillators is our main concern.
The measured spectrums of the single free running

oscillator are shown in Figs. 8a and b. The spurious in this
figure are AC power supply harmonics. First, this oscillator
vibrated by 5 g, 1 kHz sinusoidal vibration in the direction
of z-axis, the spectrums of the vibrating oscillator are
shown in Figs. 9a and b.
The experiment was repeated for x- and y-axes as well, we

observed that the acceleration sensitivity vector is about 6 dB
smaller than z-direction for these axes meaning that the
acceleration sensitivity vector of the DRO has negligible
components in x- and y-directions. As such we can assume
that the acceleration vectors of these oscillators are
approximately parallel to z-axis.
Fig. 7 Block diagram of the phase noise measurement system [19]
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Now, according to the block diagram of Fig. 6, two
oscillators were mounted and fixed on the fixture in three
configurations (shown in Fig. 5b) and exposed to vibration.
The oscillators are put on opposite sides along the z-axis.
The after-lock spectrum of the coupled oscillators subjected
to vibration in the direction of z-axis is shown in Fig. 10.
The reduction of 1 kHz spurious according to these
measurements is about 8 dB. The measured reduction in 1
kHz sideband is not in the order of prediction of Section
3. The main reason is that the reduction factor of (28) is
valid only when two oscillators have exactly the same
characteristics, however, simulation can be performed to
reveal that inter-injection coupling of non-similar oscillators
(non-similar frequency of oscillation, output power and
acceleration sensitivity) degrades the reduction factor
substantially. In the next section, we show through the
dynamic simulation of two oscillators with slightly different
characteristics, how the expected sideband reduction factor
could be reduced significantly.

5 Dynamic simulation and discussion

It is observed that reduction in the spurious sidebands is far
less than the expected theoretical values described by (28),
here we discuss how and why practical sideband reduction
could be in the vicinity of the measured values. Consider
(18), these differential equations describe the dynamic
behaviour of two mutually coupled oscillators. It is
common to assume a quadratic behaviour for non-linear
resistance (RD) to model the non-linearity (Van der Pol
oscillator)

1− RD

RL

( )
= m A| |2− A0

∣∣ ∣∣2( )
(29)

In which A0 is the free running amplitude of oscillation and μ
is an empirical constant which models the saturation
behaviour of the non-linear element. We have chosen μ = 3
in our simulations. Applying this model, (18a) and (18b)
become

dA1(t)

dt
= m

2Q
2pf0 + 2pDf cosvmt
( )

A1 A2
0 − A2

1

( )
+ 1

2Q
2pf0 + 2pDf cosvmt
( )

A2 cos u2 − u1
( )

(30)
1107
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Fig. 8 Measured spectrums of the single free running oscillator

a Spectrum of the non-vibrating oscillator
b Spectrum of the non-vibrating oscillator measured by delay line frequency discriminator
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dA2(t)

dt
= m

2Q
2pf0 − 2pDf cosvmt
( )

A2 A2
0 − A2

2

( )
+ 1

2Q
2pf0 − 2pDf cosvmt
( )

A1 cos u1 − u2
( )

(31)

The phase equations remain unchanged. Although it is true
that the phase equations are dominant for specifying the
behaviour of weakly coupled oscillators (as we assumed in
Section 3), here we consider both phase and amplitude
equations. As such we can also see the effect of non-equal
amplitudes of coupled oscillators on the sidebands
reduction factor. Numerical simulations confirm that the
contribution of amplitude discrepancy can be ignored.
We solve these non-linear equations numerically (using

Runge–Kutta numerical solver of MATLAB) and obtain the
amplitude and phase of each oscillator against time.
1108
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Then, using fast Fourier transform (FFT) algorithm, the
frequency spectrum of oscillators can be obtained.
We choose f0 = 1 GHz as free running oscillation

frequency, fm = 100 kHz as vibration frequency, Q = 50 as
loaded quality factors of oscillators and |Γ| = 1 × 10−5/g as
the magnitude of the acceleration sensitivity vector and the
coupling factor of ε = 0.2. Let us first obtain the output
spectrum of a single oscillator subjected to acceleration.
Assume |a| = 5 g (parallel to the acceleration sensitivity
vector). We have Δf = f0 Γa = f0|Γ| × |a| = 109 × 5 × 10−5 =
5 × 104 Hz. The output spectrum of such a single vibrating
oscillator is plotted in Fig. 11.
As can be seen from Fig. 11, the side bands induced by

vibrating signal are about 13 dB below the carrier level and
is consistent with the result of (9), which is about 12 dB.
Next, consider two coupled oscillators which are subjected

to an acceleration vector �a such that the vibration sensitivity
vector of the first oscillator has the same direction as the
T Microw. Antennas Propag., 2013, Vol. 7, Iss. 13, pp. 1102–1112
doi: 10.1049/iet-map.2012.0540



Fig. 9 Spectrum of the oscillator vibrated by 5 g, 1 kHz sinusoidal vibration in the direction of z-axis

a Spectrum of the single vibrating oscillator
b Spectrum of the vibrating oscillator measured by delay line frequency discriminator
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applied acceleration vector; Γ1 = ca, and the vibration
sensitivity vector of the second oscillator is in the opposite
direction to this vector; Γ2 =−ca. First assume that the two
oscillators are exactly similar. It means that their free
running oscillation frequencies ( f0) and amplitudes (A0), the
magnitude and direction of their acceleration sensitivity
vectors are the same exactly. The applied acceleration
vector is the same as the previous example used for single
oscillator. Now, four coupled nonlinear differential
equations are solved numerically to obtain the phases and
the amplitudes of the vibrating oscillators. The after lock
output spectrum of one of the coupled oscillators is plotted
in Fig. 12.
The reduction factor for these two coupled oscillators is

plotted in Fig. 3 against vibration frequency. Comparing
Figs. 3 and 11 shows that the reduction of side band level
is close to the reduction factor predicted by (28). The
difference between the results is mainly because of the
following reasons:
IET Microw. Antennas Propag., 2013, Vol. 7, Iss. 13, pp. 1102–1112
doi: 10.1049/iet-map.2012.0540
† Since the injection level to each oscillator is small we
supposed that the amplitudes of oscillators remain
unchanged, and this permits us to ignore amplitude
differential equations.
† The simplifications made to the phase equations (that is
approximating sinusoid function with its argument).
† The assumption of narrowband FM, which is not complied
well for the above simulated example.

In order to investigate the effect of discrepancies between
two oscillators, we intentionally make differences in their
characteristics. The main sources of discrepancies are

† Different acceleration sensitivity vectors (both magnitude
and direction) of the oscillators which results in different
modulation index

b1 =
Df1
fm

= f0G1 a

fm
and b2 =

Df2
fm

= f0G2 a

fm
1109
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Fig. 10 After-lock spectrum of the coupled oscillators subjected to vibration in the direction of z-axis

a After-lock spectrum of vibrating oscillator 1
b After-lock spectrum of vibrating oscillators using delay line frequency discriminator
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of the oscillators.

† Different free running frequencies of oscillation.
† Different free running amplitudes of oscillation.

Numerical simulations reveal that the dominant factor in
degrading the sideband reduction, is different acceleration
Fig. 11 Output spectrum of a single vibrating oscillator

1110
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sensitivity vectors (different magnitude and direction) of the
oscillators. This discrepancy could happen easily because of
mechanically imperfect fabrication of oscillators or different
position of the tuning screws of DROs. As an example, we
assumed two oscillators with different modulation indices
of 50%, β2 = 1.5β1, different free running frequencies of
about 3 MHz (0.3%) and different free running amplitudes
of about 2 dB. The resultant output spectrum of one of the
inter-injection locked oscillators, after numerical
computation, is plotted in Fig. 13.

Fig. 13 reveals that the reduction factor could be degraded
by about 25 dB because of non-similarity of vibrating
oscillators. This imperfection factors decreases the reduction
factor to about 11 dB instead of the expected theoretical
value of 36 dB. This reduction factor is in the order of
values obtained in our measurement system.

6 Conclusion

Vibrations increase the phase noise of microwave oscillators.
In this paper, a novel technique was proposed to reduce the
undesirable effects of vibrations, that is by using
T Microw. Antennas Propag., 2013, Vol. 7, Iss. 13, pp. 1102–1112
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Fig. 12 After lock output spectrum of two similar oscillators subjected to an acceleration vector

Fig. 13 Reduction factor degradation because of considering all sources of discrepancy (frequency, amplitude and modulation index) of the
coupled oscillators
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inter-injection locking of two mutually coupled oscillators.
The oscillators must be placed in such a way as to have
opposite acceleration sensitivity vectors. A theoretical
formula was obtained for sideband reduction of vibrating
coupled oscillators. However, dynamic simulations showed
that reaching the theoretical reduction in sideband is
improbable in practice, but one can expect sideband
reduction of about one order lower in magnitude, which is
still noticeable. Experimental measurements using
sinusoidal vibration confirm the applicability of the
proposed method and about 8 dB reduction in spurious of
the vibrating oscillator was observed. The same reduction in
augmented phase noise because of random vibration is
expected.
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