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Abstract: Binary integrators are an important part of the receiver in many operating radar systems.
The optimisation of a binary integrator is not a simple task, because it requires the solution of a
(k x n)-dimensional nonlinear optimisation problem, where »n is the number of integrated bits
(or the number of sensors in a distributed radar or sensor network) and % is the number of the
design parameters of the single-pulse detector. An algorithm that converts the multi-dimensional
optimisation problem into a one-dimensional problem, so reducing considerably the computational
complexity, is developed. This reduction in computational complexity makes the real-time
optimisation possible and practical, so it is very helpful for mobile sites in which the optimisation
should be performed continually. The proposed algorithm can be applied when either the ‘AND’ or
the ‘OR’ integration rule is adopted. The results are illustrated by means of two study cases. In the
first case, the binary integrator of a constant false alarm rate radar detector is optimised; in the
second one a decentralised detection system composed by » similar sensors is considered and

the decision rules are jointly optimised according to the Neyman—Pearson criterion.

1 Introduction

In a single-sensor detection system, the decision about the
presence or absence of a target in the cell under test
(CUT) is often based on single-pulse processing. In many
cases, the performance of this simple single-pulse detector
is not satisfactory. To improve performance, radar systems
commonly employ binary integration [1-3]. In this case,
the receiver declares that a target is present in the CUT if
there are at least &k detections out of n successive single-
pulse binary decisions; otherwise, the target is declared to
be absent. Such a binary integration is quite common in
pulse-Doppler airborne radars. In these systems, the output
of Doppler processor (MTD) is binary integrated to
improve the detection performance. ‘3 out of 8” and ‘4 out
of 8’ schemes are commonly used in such systems.

A k-out-n integration rule is quite often implemented in
decentralised detection also [4—7]. In fact, in modern
systems some type of diversity is used to obtain more
reliability and survivability. A simple method to obtain
this diversity is to use n cooperating receiving sensors in
place of one. In an ideal system the signals of all these
sensors are sent to a fusion centre, which decides about
the presence or absence of the target in the CUT. In a real
scenario these sensors may be placed far from each other
and far from the fusion centre, and as a result of limited
bandwidth and of some other practical issues, it may be

© The Institution of Engineering and Technology 2008
doi:10.1049/iet-rsn:20060087
Paper first received 24th June 2006 and in revised form 18th June 2007

Y. Norouzi and M.M. Nayebi are with the Department of Electrical
Engineering, Sharif University of Technology, Azadi Ave., PO Box 11365-
9363, Tehran, Iran

F. Gini is wih the Dipartimento di Ingegneria dell’Informazione, University of
Pisa, via G. Caruso 14, Pisa 56122, Ttaly

E-mail:y_norouzi@ee.sharif.edu

42

better that each local sensor takes a preliminary decision
and transmits only its binary decision to the fusion centre.
The fusion centre takes the final decision about the presence
of the target based on these n binary decisions, that is by
processing these n bits [4]. Therefore again we encounter
the concept of binary integration.

In many cases the performance of these sensors is not the
same, even if they are of the same kind. For example these
sensors may be radars of the same kind located at different
geographical areas, as shown in Fig. 1. They collect samples
of signals backscattered by the same target; the distance of
the target is different for different radars and as a result the
radars will receive echo signals having different
signal-to-noise power ratios (SNRs). Moreover, different
grazing angles may also cause different radars to observe
different clutter statistics. According to the Neyman-—
Pearson criterion, the decision thresholds of different local
sensors may be different and they should be jointly opti-
mised to achieve the highest detection probability for a
fixed probability of false alarm at the fusion centre [1].

We encounter a similar problem in a single-sensor radar
system employing a binary integrator. For example if the
sensor is surveillance radar with a mechanically rotating
antenna, as the antenna rotates the echo pulses received
during the time on target (ToT) will be modulated in ampli-
tude according to the antenna beam pattern; therefore they
will have different amplitudes, that is different SNRs.

In this work, we describe an efficient approach to the
global optimisation of the detection thresholds (The
thresholds could be different from one another to take into
account the different SNR values for each pulse. Even if
the sensors are all equal, sometimes better performance
can be achieved by selecting different thresholds.). These
findings are derived under the assumption that the binary
integrator adopts the ‘AND’ or the ‘OR’ fusion rule.

Such a complexity-reduced optimisation algorithm is
very helpful for mobile sites. In this site, the environment
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Central
Detection Unit

Fig. 1 Decentralised detection system (here all the radars are
the same, but because of different distance from target, their detec-
tion performance is different)

surrounding the sensors changes continually. So the optim-
isation of the detector should be carried in an almost real-
time manner. Such an optimisation is possible only if the
algorithms are not complicated.

Previous works: Binary integration was first introduced in
1950s and 1960s [2, 3, 8]. At that time the most important
feature of this method was its simplicity. Further investi-
gations showed that binary integration is also robust to
heavy-tailed noise [9]. A very similar optimisation problem
shows up in the field of decentralised detection. Tenney
and Sandell investigated the optimum Bayes detector for
the case of two sensors [4]. Sadjadi extended this work to
the case of n sensors and M hypotheses [10]. Chair and
Varshney developed the optimum structure for the central
detector, under the assumption of known local detectors’
structure [11]. In all the above-mentioned works, it was
assumed that the signals received by the sensors are mutually
independent. The more complicated case of correlated
signals is discussed by Drakapoulos and Lee in [12], Lauer
and Sandell in [13] and by Lin et al. [14]. Kazakos et al.
found some bound on the error probability of decentralised
detectors [15]. Liu et al. developed some methods based on
a genetic algorithm to find the optimum solution for desig-
nation of a decentralised detector [16]. Sometimes it is poss-
ible for each sensor to send more than one bit for each
observation; the problem of optimum quantisation has been
addressed by Duman and Salehi in [17].

In most of these works it has been assumed that the com-
munication link between sensors and central unit is ideal,
but in a real scenario we have to take into account the non-
ideality of communication channels. The problem of limited
bandwidth of the communication channel in a decentralised
system has been addressed by Chamberland and Veeravalli
[18] and by Gini et al. [19]. Appadwedula et al. investigated
the case where the sensors are powered by some batteries,
therefore the total energy is constrained [20].

In the field of radar decentralised detection,
Thomopoulos et al. [21] showed that in order to achieve
optimal detection performance the local detectors and the
fusion centre should be jointly optimised under the
Neyman—Pearson criteria. Barkat and Varshney [22, 23],
Longo and Lops [24] and Nguyen ef al. [5] analysed
some decentralised constant false alarm rate (CFAR) detec-
tors. Gini et al. [6, 7, 25] developed some methods to find
the optimum solution for decentralised detection systems;
their method reduces a (k x n)-dimensional optimisation
problem to some n-dimensional optimisation problem, so
reducing considerably the complexity of problem.

We should mention that in addition to radar systems, the
binary integration is of the same importance in sensor
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network communication systems. Lots of papers are also
published in this field. Some new contributions in this
field can be found in [26, 27].

Consider a decentralised detection system that is
composed of three sensors characterised by the receiver
operating characteristics (ROC) shown in Fig. 2. At the
fusion centre, a final decision is taken based on the AND
fusion rule. Assuming that the probability of false alarm
(Py) at the fusion centre is equal to 5 x 102, the achievable
probability of detection (Py4) as a function of the local Py, of
the first and second sensors is shown in Fig. 3 (the local Py, of
third sensor is deterministically obtained by these two since
the total Py, is fixed.) The surface in Fig. 3 has three local
maxima, but only one of them is the global maximum. If
we want to find this optimal operating point by means of
some gradient-type method, it may be trapped in one of the
local maxima. To avoid such an event we should first use a
sufficiently fine grid search, to find some point near the
global optimal point and then we can use a gradient-type
method. Obviously, the amount of operations needed for
such a search increases exponentially with the number n of
sensors. This makes the optimisation process very time-
consuming, even for a moderately high number of sensors.

In this paper, we show that for the special cases of binary
integrator employing an ‘AND’ or ‘OR’ fusion rule the
multi-dimensional optimisation problem can be converted
to a 1D problem. The proposed algorithm can be used to
optimise the binary integrator of a CFAR detection
system, that is to find the optimal number of bits (the
window size of the binary integrator) and the optimal
local threshold values. Besides, the algorithm can also be
used for the multi-radar scenario with similar sensors as
well as any other type of sensor networks.

Some authors have proved that even if the sensors are
similar, the optimum solution can be achieved by selecting
different threshold values [28, 29]. We will show when it is
better to use different thresholds and when the optimal sol-
ution is achieved by using equal local thresholds.

The rest of this paper is organised as follows. In Section 2
we introduce the assumptions and the notation that are used
throughout the paper. In Section 3 we derive some useful
equations for the AND fusion rule. Then, we develop an algor-
ithm to find the optimal operating points. In Section 4 we con-
sider the OR fusion rule. The case of (n — 1)-out-of-n fusion
rule is treated in Section 5. We show that in this case the
problem cannot be reverted to a 1D one, as in the case of
the AND and the OR fusion rules. However, in this case we

ROC of sensors

Fig.2 ROC of the single detectors which are used in Fig. 3
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Py = 51072, 3 sensors

Fig.3 Total P,; of a distributed system composed by three sensors; AND binary integration at the fusion centre, total

Pu=35x10"°

can reformulate the problem as a 3D optimisation problem. In
Section 6 we use the proposed method to optimise the well-
known log-f CFAR detector. In Section 7 we consider the
case of a decentralised sensor system composed by similar
sensors. Finally, in Section 8, some conclusions and some
hints for future investigation are reported.

2 Basic assumptions

The definitions that are commonly used in decentralised
detection are now introduced and their relations with
binary integration are described. The probability of detec-
tion of ith sensor is denoted by Py4(i) and its probability of
false alarm by Pg,(7). When the specification of the local
detection rule requires one to fix only the detection
threshold, for each fixed SNR we have a one-to-one
relationship between Pg4(i) and Pg(i). In some cases,
specification of the local detection rule requires to fix k£ mul-
tiple parameters. For example in an ordered statistics (OS)
CFAR detector, it is needed to fix the rank of the selected
sample and the detection threshold. In this case, for every
Py, (i) value, there exist several sets of thresholds and there-
fore several values of Pg4(7), and it is not possible to define
uniquely P4(i) as a function of Pg(i). However, in [6]
(see also [25]), it is shown that in order to optimise detection
performance in the Neyman—Pearson sense, for every value
of Pg,(i) we should select the £ — 1 additional parameters
(additional with respect to the local detection threshold) in
order to achieve the highest value of P4(i). The ‘optimised’
P4(i) is unique for every value of the local detection
threshold, so it is unique for every value of Pg(i).
Therefore it is possible to state the following relationships

P, (i) = x;, i=1,2,...,n

Py(i) = filx)

OSxifls

(M
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where f; (-) represents the relation between the ‘optimised’
Py(i) and the Py (i), that is the ‘optimised’ ROC curve of
the ith sensor. When the sensors are similar, the f;(-) func-
tions are all the same. However, as mentioned before,
even in the case of similar sensors the best performance
may be achieved by choosing different local detection
thresholds, that is different x;s.

In the case of a single-sensor system employing a binary
integrator, Pg4(i) and Pg(i) represent, respectively, the
detection and false-alarm probabilities for the ith pulse in
the stream of »n successive pulses. Again, if the SNRs are
different for different pulses, then the fi() are different;
otherwise they are all the same.

3 AND decision rule

In some scenarios, the detector should declare the pre-
sence of a target only if in all single observations
the target is detected. For example assume that in a cog-
nitive radio network the sensors want to decide whether a
frequency band is free or it is used by a primary licensed
user. In such a scenario, it is reasonable to declare a
frequency band as a free band, whenever all the sensors
have declared it as a free band. In this example if we
define the declaration of a free band as detection, then
the final detection should be announced if and only if
all sensors have declared detection. Such a method is
the AND decision rule. Under the assumption that the
local decisions are conditionally independent, the
probability of false alarm at the fusion centre (Pg,) is
given by

Py =[] Puld )
i=1
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Using the notation of (1), we have

Pfa = nxi
i=1

Py =] ]AGx)
i=1

where Py is the probability of detection at the fusion centre.
We should select the x;s to achieve a Py, equal to a given
value, say «, and at the same time to obtain the highest poss-
ible value of Py. A well-known method to carry out this
optimisation is the Lagrange multipliers method [6]. It
requires calculation of the derivatives of the following func-
tional Q with respect to each x; as well as A

Hf(x) (Hx —a) )

i=1

(€)

Q(xlsx29 cees Xy,

Then, these derivatives are set equal to zero. Carrying out
these derivations, we obtain the following set of equations
that must be jointly solved

K[ T —a]x=0. k=1.2.....n
i=1 i=1

i#k i#k (5)
Hxi —a=0
i=1

where f/(-) is the derivative of fi(-). The cost function in (5)
can be simplified to as follows

fk/(xk) - AT
|| -——||-:0 k=1,2,... 6

and then it can be expressed as

xkfk’(xk): AT X _ APy k=12, .
i) TG~ Py -

The right part of above equation is the same for all n
equations. Therefore by setting Liy(xi) = (xx ¥’ (x0)/fi (x1)
and w = (APg,)/ P4, we obtain the following set of equations

Li(x)) = Ly(xy) = -+

If we denote by I'i(+) the inverse function of L,(-), the
local probabilities of false alarm are given by x; = I'y(w);
once the optimal x; has been found, the local thresholds
are then obtained from the local ROC. The optimisation
problem is basically reduced to the problem of finding w
as the solution of the following equation

.oon (7

= L,(x,) =w ®)

gw) =] [Tuw) —a=0 ©)
k=1

Unfortunately, quite often I'y(-) cannot be expressed in
closed form. In such a case we should solve (9) numerically,
for example by means of the Newton’s method (Newton’s
method is one of the most widely used methods to find
numerically the solution of an equation in the form
g(w) = 0). It uses a local linear approximation of the func-
tion g and it finds the solution by solving the following
recursive equation [30]

k
K+ (0 gw®)

W _ _
g' (W)
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(10)

where g'(w) denotes the first derivative of g(w). Newton’s
method can be used to solve (9) through the following steps:

1. An initial estimation for the value of w is needed; to
obtain this we can assume that the sensors have the same
probability of false alarm, that is

x,=a, i=1,2,...,n (11)
Then we assume that the true value of x; is between 1/10
and 10 times the above calculated value. For all these
values we calculate the corresponding w using (8); we
select the initial value of w as the minimum or maximum
of these values; this initial value is named w©
2. For any w®, the following equations should be solved
with respect to x;, using some numerical method

Lx)=w®, i=1,2,...,n (12)

3. The value of w* is calculated from w® and x;s of (7)

by solving the following equation

l_a(l_[l 1 z

D) _ R
" " P > (xi(dLi(xi)/dxi)y1

(13)

This equation is derived from (10) by calculating the deriva-
tive of g(w) which is equal to

(w)—HF( ). Zdr(w) Hr( ). Z( dL(x)

(14)

Now if we simplify (10) we obtain (13).

Parameter 8 should be selected between zero and one. In
Newton’s method it is equal to one, but using this value
sometimes we do not have convergence; therefore it may
be necessary to select a value of 8 lower than one.

4. Knowing the next value of w (i.e. w*), the next esti-
mations of x;s should be calculated by solving (12). The
next value of Py, is calculated inserting these x;s in (3).
Now if this value of Py, is close enough to the desired
value, then the algorithm terminates; otherwise it returns
to Step 3.

In each step in the algorithm, two main tasks should be
performed. First, we calculate the solution of (12); therefore
the amount of operations needed by this part increases lin-
early with the number of sensors. Secondly, (13) should
be calculated in each step. The amount of calculations
needed by this equation is linearly dependent on the
number of sensors. Therefore the amount of operations
required to implement the above algorithm is a linear func-
tion of the number n of sensors, whereas in all other
methods, such as the one suggested in [6], the number of
operations increases exponentially with n. Another dis-
tinguishing fact of the method proposed here is that it con-
verts the information about the optimum point from
n-dimensional space to a 1D space. We will use this import-
ant fact in Sections 6 and 7. In some cases it is not possible
to find a closed equation for the ROC of the detector. In this
case one can fit the experimental ROC curve of the detector
(e.g. obtained by Monte Carlo simulation) by a closed-form
equation and then use the above algorithm for the
optimisation.
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4 OR decision rule

The OR detector accepts the existence of a target if at least
one sensor declares the existence of a target. Py, and P4 are
related as follows

Pa=1-]]0-x) (15)

i=1
Py=1 —H(l fi(x) (16)

As in the previous section, x; and fi(x;) denote the Py, and
P4 of ith local sensor, that is Pg,(i) and Pgy(7). In this case,
optimisation via the Lagrange method produces the follow-
ing functional Q to be maximised

Oxy, x5 -+ X, A)—l—l‘[(l [

- /\(1 - ﬁ(l —x)— a) (17)
i=1

After the usual derivations, similar to the AND detector
case, we come up with the following equations to be solved

(1 —x i) _ (1 —x)f5(xy)
(I =fi1(x)) (I = £2(x2)) (18)
=)
(I = £,(x,))
that is Li(x) = L»(x,) = -+ = L,(x,) = w, where we define
. (1— xk)fk/(xk)
O =T ) (4

These equations are quite similar to that of the AND
detector. Again, by defining I'y(-) as the inverse of L(-),
we come up with the following equation to be solved with
respect to w

Gw)=1-— ﬁ(l —T,(w)—a=0 (20)
i=1

Therefore the steps for finding the optimum operating
point (i.e. the optimal thresholds) for the OR detector are
similar to those for the AND detector. If we use Newton’s
method, it is necessary to solve following recursive
equation

1-(1-a)/[T(1 -x)
Do (1= xi)(dLi(xi)/dxi))_]
Equation (21) is derived similarly to (13). Following the
steps of the algorithm described for the AND detector,

just replacing the equations of the AND detector with
those of OR detector, we finally come up with the solution.

wh D =y® 4 g Q1)

5 ‘(n— 1)-out-of-n" detector

The issue now is whether or not we can find similar simpli-
fying equations for the general ‘k-out-of-n’ binary inte-
gration rule. Unfortunately, we found that this is not
possible. However, it is possible to reduce the dimension
of the optimisation problem in the case of
‘(n — 1)-out-of-n’ rule. According to this rule, a detection
is declared either if all sensors detect the signal or when
one does not detect but all the other » — 1 sensors declare
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a detection. Since these two events are mutually exclusive,
the probability of detection by ‘(n — 1)-out-of-n’ rule is the
sum of these two probabilities

Py=[]Pu+ Y (=P []PsCi)
i=1 i=1 j=1

J#i

— ( —n+ Z 7, m) [1P«® (22)

The equation for Py, is obtained by replacing Py(i) with
Pp(i) in (22). Again we can use Lagrange multipliers
method to find the optimum solution minimising the follow-
ing functional

O, X5, ..o, X, A) = —n+Z l_[f( X;)
f(X)

g

(23)

The derivative of Q with respect to x; is

E__fl‘c/(xk) - o
o~ g VI

_ JeGeo) 1 -
* (1 " ,Z:f(x )) i L1

Equating the derivative to zero, we obtain the following
equations

Xfr () (d—n+ Yo (L/fix) — (1/fi(x)))
Ji(x) A=—n+>7" (1/x)—1/x)
My, 25
[T fix)’ 2een ()

In the above equation three terms are in common for all
values of k; defining these three terms as follows

_ Al_[zr‘lzlxi —1_ 1
Y gey YT Zf<>

"1
=1 - — 26
E=1+n ;xi (26)
we can simplify (25) as

Qi) () = 1/9) _ wé
sz(xk) (o —1/9) b

To find the solution for above equation, we should first
begin with an initial guess of x;s. Then, w, iy and & can be
calculated using (26). The next values of x;s are calculated
using (27). Doing these steps iteratively, we can find the
optimum values of x;s. Of course, the solution is not as
easy as that of the AND or the OR rule.

For any other ‘k-out-of-n’ integration rule, we obtain a
similar equation which is not possible to be changed to a
function with single variable; therefore it is not possible

k=1,2,...,n (27)

IET Radar Sonar Navig., Vol. 2, No. 1, February 2008



to obtain the same complexity reduction as in the AND and
OR cases. Yet, solving the optimisation problem in the 3D
space is simpler than solving the problem in the original
n-dimensional space.

6 Application to CFAR detection optimisation

In many radar systems, several pulses are received that have
been backscattered from target. The amplitude of these
echoes change in accordance to the radar antenna beam
pattern. The samples of the received signal are then sent
to a CFAR detector and its outputs, which are binary
digits, are processed by a binary integrator. If we name
the reference samples of the CFAR processor ‘v;” and the
CUT data ‘u’, then many CFAR processors decide about
the presence or absence of the target in the CUT by imple-
menting the following rule (e.g. [31])

H,

uzy-AWwy, vay ooy V) + B, vy, .., 1) (28)
H,

Here, A and B are some statistics calculated from reference
samples, and vy is a constant set in order to provide the
desired value of Pg,. In conventional CFAR detectors the
same value of vy is used in successive pulses, but as was pre-
viously mentioned it may be better to use different values
for different successive pulses to obtain the highest Py,
while still maintaining the desired Pg,. Now we show how
the results of the previous sections can be applied to the
optimisation of the CFAR detector.

We want to optimise a system composed by the cascade
of a CFAR detector and a binary integrator which adopts the
AND rule. The CFAR algorithm is of log-f type, that can
maintain a constant Pg, in heavy-tailed clutter, such as
Weibull, Lognormal or K-distributed clutter [31]. The
maximum SCR of the target is 7 dB, but due to the ampli-
tude modulation impressed by antenna beam pattern, the
echo of this target is received in n = 13 successive pulses
whose SCR values are for example 1, 2,...,6,7,6,...,
and 1 dB. This situation, for example, can represent a
radar system whose antenna 3 dB beamwidth is equal
to 1°, its pulse repetition frequency is 350 Hz and its
rotation speed is 8.3 rpm. The underlying clutter is
assumed to be lognormal with parameter o= 0.5. The
simulated log-r CFAR has 16 reference cells, the binary
integrator adopts the AND rule. The detection perform-
ance of this system is reported in Fig. 4. The solid line

AND Detector

0.8
0.8
o0.7-
0.6/

o” 05
0.4
0.3}

0.2

o —The p when equal for all samples
’ The p when are used
0 ] S 7 :
10 10 10 10 10 10
P

Fig. 4 Detection performance of the system composed by a log-t
CFAR detector and a binary integrator
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represents the overall performance of detector when the
same threshold is used for all samples. The dashed line rep-
resents the performance achieved after optimisation. It is
almost obvious that the difference between the optimised
and non-optimised detectors may be considerable.

The target echo is received in several successive pulses,
but in the first and last pulses the power of the received
echo is low, and it may be better not to use these
samples because when we increase the number of
samples in the binary integrator both the Py, and P4 will
change. In order to maintain the previous Py, we should
change the threshold, but this change in threshold may
reduce the Py; this is especially true if the newly added
sample has a low SCR. Therefore there exist an optimum
number of bits used which should be used for binary
integration.

This optimum number can be calculated easily by the
optimisation method mentioned in Section 3. Referring
to Fig. 4, if for example we require the system to operate
with Pr, = 1072 and P4 = 0.7, we obtain that the ‘local’
Py, relative to the samples with SCR less than 3 dB is
almost equal to 1, which means these samples should not
be used to take the final decision. The reason for this beha-
viour can be understood from Fig. 5; here the function L(-)
is plotted for some values of SCR. As we see the minimum
value of this function for each sensor is different from
others, therefore when the line of constant w goes down,
after this minimum (the minimum of the L-function), it
has not any intersection with some curves; it means that
we cannot find any point in which the gradient of the
total detection probability function (Pg4) is equal to zero
and also this point satisfies the constraint on total Pg,.
Referring to calculus, in this case the optimum solution
is located on the boundaries that is Pr, = 1. Note that if
the Py, of a sensor is equal to 1, it means that this sensor
should not be used in the decision process. Using this
method we can find the optimum number of processed
samples.

7 Distributed detection with similar sensors

As it is mentioned in [28, 29], even if all the sensors in a
distributed system are equal, the optimum solution may be
achieved via different local decision thresholds, that is
different values of Pg,(i). We first consider the case of the

Lx) for SCRs equal to 2 and TdB

[--- scr=za8

b ——  SCR=7dB

1 Uﬂeuﬂ‘caummwfor.ﬁ":m'z i

Fig.5 L(x) for AND detector and SCR = 2 and 7 dB (the line of
constant w has not any intersection with the graph of SCR = 2 dB,
which means that for this detector the optimum point is on the
boundary)
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AND detector and we will show when we should select the
same Pg,(7)s and when we should search for different Pg,(7)s.
As it was shown in Section 3, the optimum operating point
is obtained by jointly solving (8) and (9). This approach can
be used both for similar sensors and for non-similar sensors.

Fig. 6 shows f{(x) as a function of x for a cell-averaged
CFAR (CA-CFAR); the target signal and the noise are
assumed exponentially distributed with different powers.
In this figure the SNR is set equal to 10dB and the
number n of reference cells is 10. The L(-) function of
this detector for the AND integration strategy is reported
in Fig. 7; it is a one-to-one function, which proves that
the optimum point for a combination of n sensors of
this type will be achieved through selection of the
same Py, (i)s because otherwise the L(-) function of differ-
ent sensors will be obtained for different values, which is
in contradiction with optimality regarding Lagrange
method [30]. The only other possible optimal point is
to select the Pg(i) of some sensors on the border, that
is 0 or 1, and select the same value for other sensors.
Since we are considering the AND detector, it is not
possible to select Pg(i) of any sensor equal to zero
(Otherwise the final results will be equal to zero all
the time.). Therefore the only possibility is to select
some Pg(i)s equal to 1, which means that we do not
use the data from these sensors in the decision process.
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Fig.6 ROC of a CA-CFAR with 10 reference cells (noise and
signal samples are exponentially distributed)
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So we can state that: for the AND binary integration rule
with similar sensors, if the L(-) function is one-to-one, the
optimum solution is to select equal Pp(i)s for some
sensors and not to use the others.

Sometimes L(-) is not one-to-one. Consider the following
ROC

1, at+d<x<l1

b/ bl a<x<a+d

g (@/d+2b) b=a((b=1)/d) a—d<x<a
x o 1/d2ab—(b+1)x—b)

J) =

a—(a/d+2b)(a _d)b—l—a((b—l)/d) O<x<a—d
wel/dab—a=b).

(29)

Here a is some value between 0 and 1, b is greater than 1
and d is a positive value less than @ and 1 — a. This function
is shown in Fig. 8 for a, b and d equal to 0.5, 5 and 0.05,
respectively. L(-) has the following simple form

0, a+d<x<1
b
—g(x—a)—i—b, a<x<a+d

b—
d

I, 0<x<a-d

L(x) = (30)

1
x—a)+b, a—d<x<a

This function is shown in Fig. 9. For some values of w, the
equation L(x) = w has multiple solutions; therefore it is
possible to find the optimum point where the Pg,(i)s are
not the equal. For values of w between 1 and b, the equation
L(x) = w has two solutions which are

d d
xIZE(b—w)—i—a, xzzm(w—b)—i—a 31

Therefore if there are n of these sensors, the optimum sol-
ution is to select the Pg(i)s of k of them equal to x; and
n — k others equal to x,. In this case it is not easy to find
a closed solution for optimum value of k. All possible
values should be examined and the optimum value should
be selected.
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Fig. 8 ROC for the function of (29) for a= 0.5, b=15 and
d=0.05
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Fig. 10 P, as a function of Py, for AND combination of four
similar sensors whose ROC is shown in Fig. 8 (solid line rep-
resents the case of the same Py (i)s and dashed line shows the
optimal case)

In Fig. 10, P4 is shown as a function of Pg,; the number of
identical sensors is n = 4; the ROC of each sensor is plotted
in Fig. 8. In Fig. 10 the solid line shows the case where the
P (i)s of all sensors identical; the dashed line shows the
case where they are optimised without the constraint of
being all the same.

Now consider the general case of ‘k-out-of-n’ detectors
with n similar sensors. If again we refer to Figs. 8 and 9,
in regions in which L(x) is not one-to-one, f(x) has an
abrupt increase. For the points near this zone (e.g. the
knee point in Fig. 8), if we slightly increase x, P4 will
increase significantly; but if we slightly decrease x, Py
will decrease only a little. Therefore if by selecting the
same Pg,(i)s for all sensors, the local Pg occurs near
this knee point, then we can increase the Pg,(i)s of
some sensors, while decreasing those of the others in
order to maintain the predefined value of P while
increasing significantly the global Py. Therefore roughly
speaking, for all ‘k-out-of-n’ detectors with »n similar
sensors we can say that: if the local ROCs have a
region of abrupt increase then there is a possibility that
the optimum solution is achieved by selecting different
P fa(i)S.
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8 Conclusions

The subject of this paper is the optimal design of the binary
integration rule within a (possibly distributed) radar detec-
tion system or generally in a sensor network. We derived
an efficient method that converts the classical n-dimensional
optimisation problem into a 1D problem, so reducing con-
siderably the computational complexity. Such a complexity
reduction is quite beneficial for mobile sites, because the
new algorithm lets the detectors to optimise their operation
continually whenever their condition is changed.

The proposed algorithm can be applied when either the
‘AND’ or the ‘OR’ binary integration rule is implemented
in the detector. The results have been illustrated by means
of two study cases: (1) the optimisation of the binary inte-
gration rule in a CFAR detector; (2) the optimisation of
the local decision rules in a distributed sensor system
employing the ‘AND’ or the ‘OR’ fusion rule at the
fusion centre. Additionally, we investigated when and
which a collection of n similar sensors in AND and OR
architecture should be treated differently. We failed to
find similar powerful complexity reduction for the general
‘k-out-of-n’ binary integration rule. Therefore this subject
remains for further investigation. Besides, through the
paper we used the assumption of independent sensors
which is sometimes violated; this case could be the
subject of further research.
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