
SUBIMAGE ERROR CONCEALMENT TECHNIQUES 

M. Hasan, A .  Sharaf and F. Marvasti 

Department of Electronics Engineering 
King’s College London 

University of London, U.K. 
E-mail: hasanC!orion.eee.kcl.ac.uk, famC!orion.eee.kcl.ac.uk 

ABSTRACT 

Images transmitted via ATM networks suffer from qual- 
ity degradation due to buffer overflow or cell header 
errors which cause ATM cells to be lost. This paper 
presents a new approach to conceal the errors in the 
received images by the application of novel error re- 
covery techniques to the decomposed DCT-coefficient 
subimages of the corrupted image. These techniques 
were developed to recover images corrupted by impul- 
sive noise. Since decomposing the corrupted image into 
the DCT-coefficient subimages generates low resolution 
images corrupted by impulsive noise, all the techniques 
used to  recover images corrupted by impulsive noise 
can be used to recover the subimages and hence the 
corrupted image. In this paper, we study the perfor- 
mance of different iterative and non-linear techniques 
to recover the corrupted subimages. The quality of the 
recovered image using these techniques is better than 
the quality obtained by many classical error conceal- 
ment techniques. 

1. INTRODUCTION 

Due to the limited capacity of the ATM buffers, low 
priority cells are discarded whenever an overflow occurs 
in the buffers. Since the loss of ATM cells causes the 
corruption of the corresponding blocks of the image, it 
is a common procedure to declare any corrupted block 
as a lost block and discard all the correctly received 
data for that block. This leaves the corrupted image 
with empty blocks at  the locations of the corrupted 
ones. Many techniques have been proposed to con- 
ceal the erroneous blocks in the damaged image. Some 
techniques are related to the Projection Onto Convex 
Sets (POCS) method [l]. Other techniques implement 
various spatial interpolation [2] and temporal extrapo- 
lation [3] methods. The idea of using subband decom- 
position in the error concealment process was used in 
[4, 51 to interpolate the missing subband coefficients. 
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In this paper, we present a new technique in which the 
corrupted image is converted into a set of subimages 
which can be considered as small images corrupted by 
impulsive noise. Errors in these images can be con- 
cealed by the application of an iterative or a non-linear 
technique designed for such type of corrupted images. 
The organization of the paper is as follows: In section 
2, we present the iterative and non-linear techniques 
used to recover the errors in the corrupted subimages. 
Section 3 presents the proposed algorithms. A compre- 
hensive discussion of the obtained results with a per- 
formance comparison- in terms of the signal-to-noise 
ratio (SNR)- among the different variations of the pro- 
posed technique and some other classical techniques is 
presented in section 4. Finally, a summary and some 
conclusions are presented in section 5 of the paper. 

2. ITERATIVE & NON-LINEAR ERROR 
RECOVERY TECHNIQUES 

Non-uniform sampling theory has played an important 
role in the development of many error recovery tech- 
niques for speech and image signals [6, 71. Any dis- 
crete signal with lost samples can be considered as a 
non-uniformly spaced signal and the values of the lost 
samples can be recovered if certain constraints on the 
average sampling rate are met. Some recovery tech- 
niques implement error reduction methods iteratively 
[6,7]. In the following subsections, we present two tech- 
niques dependent on the non-uniform sampling theory 
which are used in our algorithm to recover the missing 
DCT coefficients. 

2.1. The Iterative Technique 

This technique relies on the method of error reduction 
to improve the signal-to-noise ratio of the corrupted im- 
age. Each iteration in this technique improves the SNR 
of the recovered image if the average sampling rate is 
greater than or equal to the Nyquist rate [SI. Fig. 1 
presents a block diagram of the iterative technique. In 
Fig. 1, x[ i ,  j ]  is the corrupted image, S is a non-uniform 
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Figure 1: The Iterative Error Recovery Technique. 

sampling operator and BLO is a BundLimiting Operu- 
tor which can be as simple as a lowpass or a bandpass 
filter. It is shown in [8] that after IC iterations to recover 
Poisson or uniformly-distributed samples, the SNR of 
the recovered image is: 

SNRk = IC. SNRl (1) 

where SNRk is the SNR (in dBs) of the recovered im- 
age after the I C t h  iteration and SNRl is the SNR of the 
image after running the first iteration. 

2.2. The Non-linear Technique 

In this technique 191, a one-step, nonlinear operation 
is carried out to achieve similar SNRs to the itera- 
tive technique. This technique depends on analyzing 
the spectral content of the lowpass version of the cor- 
rupted image and the lowpass version of the nonuni- 
form sampling image. The nonuniform sampling image 
is composed of unit impulses, S [ i  - i,, j - j,], at the 
good pixel locations, [i,,jnz]. Such image is created by 
thresholding the corrupted image and then hard lim- 
iting the thresholded version. A schematic diagram of 
the non-linear technique is shown in Fig. 2. 

Figure 2: 
Technique. 

The Non-linear Division Error Recovery 

3. THE ERROR CONCEALMENT 
ALGORITHM 

The proposed algorithm makes use of the above two 
error recovery techniques to recover errors in the gen- 
erated subimages of the corrupted image. When an 
ATM cell is lost, the whole corresponding block is de- 
clared to be lost by ignoring the rest of the correctly 

received block data and replacing all the block pixels 
with zeros. The above recovery techniques are not suit- 
able to recover bursts of errors hence they can not be 
used directly to recover the lost blocks. By converting 
the image to its equivalent subimages, the above iter- 
ative and non-linear techniques can be used to conceal 
the errors in these subimages and hence recover the 
original image. 

3.1. Subimage Decomposition 

Many techniques have been developed to decompose 
images into their subbands. In our technique, we de- 
compose the image into DCT subimages with equal res- 
olutions. This is done by obtaining the 8 x 8 DCT 
transform of the original corrupted image. The result- 
ing DCT coefficients of each block are then grouped 
together to form 64 subimages. For example, the DC 
coefficients of each block are grouped to form the first 
subimage, then the first AC coefficient (AC1) of each 
block is used to form the second subimage taking into 
consideration that the relative spatial location of each 
DCT coefficient is preserved in these subimages. For 
an N x N image decomposed using an 8 x 8 DCT block, 
the final output of the decomposition process is a set of 
64 subimages with $ x $ dimensions. A general block 
diagram of the proposed algorithm is shown in Fig. 3. 

3.2. The Subimage Iterative Technique 

The simplest variation of the proposed technique is t o  
apply the iterative technique directly to the decom- 
posed subimages. In the iterative technique, the BLO 
which is used to filter the input subimages at  each stage 
is designed to adapt to the spectral shape of the fil- 
tered subimage. To generate the 2-D mask of this fil- 
ter (BLO), a copy of the FFT-transformed subimage is 
normalized and thresholded to eliminate any noise or 
unnecessary frequency components. This generates a 
variable mask for the filter which is dependent on the 
subimage to be filtered. 
After concealing the errors in each subimage individu- 
ally, the recovered subimages are recombined and then 
inverse-DCT transformed to yield the recovered image. 
For the results presented in this paper, we conceal the 
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errors in the first 6 subimages (the DC subimage and 
the first five AC subimages) since most of the energy 
is concentrated in these subimages. 

Subimage Subimage 
Decomposition Recombination 

3.3. The Iterative with Overhead Technique 

In the Iterative technique, instead of generating the 
filter mask for each subimage, the exact masks can be 
sent as a protected side information to the destination 
node. In this method, the filter envelope shape and 
bandwidth for each of the first 6 subimages are packed 
as guaranteed cells and sent to the destination node. 
This side information is used by the BLO block in the 
Iterative technique to generate the proper filter masks 
to filter the corresponding subimages. Although the 
side information in this technique produces about 8% 
overhead, it improves the SNR of the recovered image 
by more than 1 dB. 

3.4. The Subimage Non-linear Technique 

The “Iterative/Nonlinear Techniques ” block in Fig. 3 
is replaced by the non-linear division block in this tech- 
nique. This technique is supposed to converge to the 
recovered image in one step without iterations. Note 
that in Fig. 2, the lowpass filters in the upper and 
lower branches of this technique have the same band- 
width and spectral characteristics. Also, this technique 
assumes that the subimages are bandlimited which is 
almost the case for most of the subimages. Due to 
the negligible effect of considering the high frequency 
subimages, the first 6 subimages are only considered in 
the recovery process. 

4. EXPERIMENTAL RESULTS 

In this section, we report the results obtained by run- 
ning the proposed iterative and nonlinear techniques to 
recover the errors encountered in the standard Lema 
JPEG-coded image. All the results are reported for 
256 x 256 Lenna image coded using the standard JPEG 

algorithm. To simulate the loss incurred in this image 
when transmitted via an ATM network, we considered 
the whole ATM network as a discrete channel since 
we are dealing with losses of discrete cells rather than 
losses in continuous waveforms. By varying the Cell 
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Figure 4: SNR vs. Loss % for the Iterative, Nonlinear 
and Iterative with Overhead techniques - 25 iterations. 

Loss percentage from 1% to 90% for Lenna image, it 
can be seen from Fig. 4 that the Iterative with Over- 
head technique gives the best SNR. As expected, the 
SNR of the recovered image decreases with the per- 
centage of cell loss increase. The Iterative with Over- 
head technique achieves at least 13 d B  improvement 
in the SNR for the whole range of the cell loss per- 
centages. It is also obvious that the Iterative with 
Overhead technique gives better SNR measures than 
the Subimage Iterative technique for all cell loss per- 
centages. This is expected due to the fact that the 
overhead sent- which does not exceed 8% of the origi- 
nal coded bit stream- consists of information about the 
spectral properties of the original image. The Non- 
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linear technique performance is slightly better than 
that of Papoulis-Gerchberg technique [lo, 111 and much 
better than the Averaging technique performance es- 
pecially for high cell losses. In Fig. 5, we present the 
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Figure 5 :  SNR vs. No. of Iterations for different vari- 
ations of the Iterative technique - 20% cell loss. 

results of running the iterative techniques for different 
numbers of iterations using the first 6 subimages and 
for 20% cell loss. It can be seen from the figure that 
for all the iterative techniques, the SNR increases with 
the increase in the number of iterations used to pro- 
cess the corrupted subimages till it reaches the maxi- 
mum then it starts oscillating without any significant 
improvement. 

4.1. Comparison with the Classical Methods 

From the above discussion, it is apparent that most 
of the variations of the proposed technique give better 
SNR performance than the classical techniques such as 
Papoulis-Gerchberg and the Averaging techniques. The 
Iterative with Overhead technique, which can be con- 
sidered as the best among the other techniques, gives 
an average SNR improvement of about 2.7 dB over the 
performance of Papoulis-Gerchberg technique and 5.5  
dB over that of the Averaging technique. 

5 .  CONCLUSION 

Subimage iterative and non-linear techniques were pre- 
sented and tested in this paper to conceal the errors 
in an error-prone environment. These techniques rely 
on the idea of decomposing the corrupted image into 
subimages which can be considered as images corrupted 
by impulsive noise. We used iterative and non-linear 
operations in the concealment process with and with- 
out sending overhead information. Most of these tech- 

niques give better SNR performance than many of the 
classical techniques even for very high rates of cell loss. 
These techniques are suitable for any error-prone envi- 
ronment such as the ATM and the wireless ATM where 
a high percentage of cells is expected to be lost. 
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