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Critical Graphs in Index Coding
Mehrdad Tahmasbi, Amirbehshad Shahrasbi, and Amin Gohari

Abstract—In this paper, we define critical graphs as minimal
graphs that support a given set of rates for the index coding
problem and study them for both the one-shot and asymptotic
setups. For the case of equal rates, we find the critical graph with
minimum number of edges for both one-shot and asymptotic cases.
For the general case of possibly distinct rates, we show that for
one-shot and asymptotic linear index coding, as well as asymptotic
nonlinear index coding, each critical graph is a union of disjoint
strongly connected subgraphs. On the other hand, we identify a
non-USCS critical graph for a one-shot nonlinear index coding
problem. Next, we identify a few graph structures that are critical.
In addition, we show that the capacity region of the index coding
is additive for union of disjoint graphs.

Index Terms—Index coding, critical graphs.

I. INTRODUCTION

INTRODUCED by Birk and Kol in [2], index coding is the
problem of transmitting a set of messages to a number of

receivers via public communication. Each receiver may also
have some side information consisting of messages desired
by some of the other receivers. In the most general form
of the problem, each message can be desired by more than
one destination. However the special case of each message
being desired by exactly one receiver admits a graph theoretic
representation in terms of directed graphs and thus has received
particular attention. More specifically, if there are m receivers,
we can construct a graph with m vertices. We draw a directed
edge from vertex i to vertex j if and only if receiver i knows the
desired message by receiver j. In this paper we work with this
graph model for the index coding problem.

It is common to study the index coding problem in terms
of an achievable rate region based on the size of the m mes-
sages to be decoded by the m receivers (see Section II for
a formal definition). Here the rate of a receiver refers to the
normalized amount of information transmitted to it. The set of
all achievable rates, i.e., the capacity region, for index coding
problem remains an open problem. Nonetheless, there has been
some progress on this problem (e.g., see [3]–[10]). A difference
between the performance of linear and non-linear codes is
characterized in [11].
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Connections With Network Coding and Wireless Communi-
cation: The index coding problem has significant connections
with network coding and wireless communications. It is shown
in [9] that for both linear and non-linear case, for any instance
of networking coding problem, there exists an instance of index
coding problem with the same capacity region (see also [8] for
another connection between network coding and index coding
problem).

In [15], Jafar studies the topological interference manage-
ment problem for wireless networks. More specifically, given
an interference pattern in a wireless system, he constructs an
imaginary index coding problem where interference among
users is illustrated through a side information graph. He then
shows that the degrees of freedom region of a wireless inter-
ference network is related to the corresponding index coding
capacity region. For example, in [15] it is proved that the set of
degrees of freedom which are available through linear schemes
in the topological interference management problem is equal
to the linear capacity region of an equivalent index coding
problem. Moreover, the non-linear degree of freedom region
of the interference management problem is related to the non-
linear capacity region of the problem. Our results on index
coding then imply that in certain wireless networks, adding new
interference from a set of transmitters to a set of receivers does
not affect the capacity region in the high SNR regime.

Our Contributions: Given a fixed set of rates, let G denote
the set of all graphs that support the rates. We are interested
in minimal members of G (with respect to containment of
the edge set). More specifically, a graph is said to be critical
(or edge critical) if (1) it belongs to G and (2) deletion of any
edge from the graph makes it to fall outside G . It is useful
to study critical graphs since it identifies the minimum-cost
architectures of the networks supporting a given set of rates.
Furthermore characterizing critical graphs is equivalent with
solving the index coding problem itself. When we vary the
side information graph, critical graphs will be the extreme cases
where coding strategies need to change to adapt to the structure
of the graph.

To the best of our knowledge, critical graphs for index coding
have not been studied before. We present several results in
this paper regarding critical graphs. When the rates are all
equal, we identify the critical graph with minimum number of
edges (Theorem 1). Next we study the general case of arbitrary
rates (Theorem 2; here we basically prove that a simple time
division strategy is optimal). We use this result to show that
critical graphs for one-shot and asymptotic linear index coding
as well as those of non-linear asymptotic index coding are
structured, by proving that they have to be a union of disjoint
strongly connected subgraphs (USCS) (Theorem 3). On the
other hand, for non-linear one-shot index coding, we construct
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Fig. 1. This table presents the coverage of different index coding scenarios in
our main theorems.

a counterexample by finding a critical graph that is not USCS.
Next Theorems 5 and 6 find some classes of critical graphs;
these were identified after we computed a comprehensive list
of symmetric critical graphs for graphs with at most five nodes.

A potential application of critical graphs is in the study
of wireless broadcast networks. For example, in [16] side
information of nodes in a broadcast wireless network has been
employed to make the communication more efficient. In such
schemes, study of critical graphs can be helpful as it identifies
the side information that cannot make the communication more
efficient. For instance, as our results show, those side informa-
tion whose corresponding edge in the side information graph
do not lie on any cycle, will not improve the efficiency of com-
munication. Hence, these side information can be eliminated.
Accordingly, the total storage resources of wireless nodes can
be decreased using our results.

Lastly, we have a novel result (Theorem 2) for characterizing
the index coding capacity of certain structured graphs in all
scenarios except the non-linear one-shot case.

This paper is organized as follows: in Section II, basic
notation and definitions are provided. The results are given in
Section III, with proofs coming in the following section. Fig. 1
shows the coverage of various index coding setups in our main
theorems.

II. DEFINITIONS AND PRELIMINARIES

A (unicast) index coding problem comprises of m nodes,
{1, · · · ,m}, and a set of m message {W1, · · · ,Wm} where
node i needs to decode the message Wi, i = 1, · · · ,m. The
side information of node i is assumed to be a subset of
{W1, · · · ,Wi−1,Wi+1, · · · ,Wm}. We can illustrate the side infor-
mation of nodes by a directed graph G = (V ,E), where V =
{1, · · · ,m} and node i has an edge to node j (that is, (i, j) ∈ E )
if node i knows Wj. For simplicity in the rest of this paper, we
use graph as a shorthand for directed graphs. Undirected graphs
are referred to as “bidirectional graphs.”

Definition 1: A code for an index coding problem (or an
index code) consists of

1) m alphabet sets Wi, i = 1,2, · · · ,m where the message
intended by the i-th party, Wi, belongs to Wi;

2) An encoding function f from W1 × ·· · × Wm to
{1,2, · · · ,N} that compresses the messages (W1, · · · ,Wm)
into a symbol in {1,2, · · · ,N}. f (W1, · · · ,Wm) is called the
public message since it will be made available to all the
nodes;

3) A set of m decoding functions at the nodes from
{1,2, · · · ,N}×∏(i, j)∈E W j to Wi for i = 1,2, · · · ,m. Ev-
ery node should be able to decode its message using the
public message and its side information.

The rate vector associated with the code is a vector (r1, · · · ,rm)
where ri = log(|Wi|)/ log(N). We will use r to indicate the rate
vector (r1, · · · ,rm).

Probability of error associated to the code is the probability
that node i fails to correctly decode Wi for some i = 1,2, · · · ,m,
where rvs Wi are assumed to be uniform on their alphabet set
and mutually independent of each other.

Definition 2 (Linear Codes): A linear code for an index
coding problem with finite field F consists of

1) m positive integers l1, · · · , lm indicating that Wi ∈ F
li is a

sequence of length li of symbols in F. In other words, the
alphabet set for the rv Wi is Wi = F

li ;
2) A linear map f from W1×·· ·×Wm to F

n that compresses
the messages (W1, · · · ,Wm) into a sequence of length n of
symbols in F;

3) A set of m linear decoding functions from F
n ×

∏(i, j)∈E W j to Wi for i = 1,2, · · · ,m.

The rate vector associated with the code is a vector r =
(r1, · · · ,rm) where ri = li/n.

Definition 3. Linear and Non-Linear Index Coding: In linear
index coding we restrict ourselves to linear codes over an
arbitrary finite field F. However in the non-linear index coding
we are allowed to use an arbitrary code.

Definition 4. One-Shot and Asymptotic Index Coding: In
the one-shot problem, we have fixed message alphabets
W1, · · · ,Wm and seek the code with the smallest alphabet size
for the public message (i.e., minimum size of the range of f (·))
that can result in a zero probability of error. On the other hand,
in the asymptotic coding scheme the rate vector r = (r1, · · · ,rm)
is called achievable if and only if there exists a sequence of
zero-error codes whose blocklengths converge to infinity while
their rate vectors converge to r = (r1, · · · ,rm).

Remark 1: Asymptotic index coding is generally defined for
a vanishing (rather than an exactly zero) probability of error.
However [13] shows that the two definitions are equivalent.

Definition 5. Critical and Symmetric Rate Critical Graphs:
Given an index coding problem (linear or non-linear/one-shot
or asymptotic) on a graph, we say that the graph is critical
if removal of any edge from it strictly shrinks the rate region
(capacity, when we are looking at asymptotics) associated to
the graph.

The maximum symmetric rate achievable on a graph is the
supremum of r such that r = (r,r, · · · ,r) is achievable. We say
that the graph is symmetric rate critical if removal of any edge
from it strictly reduces the maximum symmetric rate the graph.
Every symmetric rate critical graph is critical, but the reverse is
not necessarily true (see Theorem 4).

Next we need the following definitions from graph theory:
Definition 6. Turán Graph: Turán Graph of order m and k,

denoted by T (m,k), is a bidirectional complete k-partite graph
with b parts of size a + 1 and k − b parts of size a, where
m = ak + b for a ≥ 0,b ∈ {0,1,2 · · · ,k − 1}. We denote the
number of edges of T (m,k) by e(m,k). In [14, Ex. 5.2.18], it is
shown that

e(m,k) =
1
2
·
(

1− 1
k

)
m2 − b(k−b)

2k
. (1)
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Lemma 1 (Turán’s Theorem): [14, Thm. 5.2.9] A bidirec-
tional m-vertex graph G that contains no clique of size k + 1
has at most e(m,k) edges. Furthermore, the only graph (up to
the class of isomorphism) with e(m,k) edges which satisfies the
aforementioned condition is T (m,k).

Definition 7. Strongly Connected Graphs: The graph G =
(V ,E) is strongly connected if there exists a directed path
between every pair of distinct vertices.

It is easy to verify that a graph is strongly connected if and
only if every edge of the graphs lies on a (directed) cycle.

Definition 8. Union of Two Disjoint Graphs: The union of
G = (V ,E) and G′ = (V ′,E ′) is defined as G∪G′ = (V ∪
V ′,E ∪E ′).

Definition 9. USCS Graphs: Graph G is USCS (Union of
Strongly Connected Subgraphs) if there exists a set of disjoint
graphs {G1,G2, · · · ,Gk} such that (1)Gi is strongly connected
and (2)G=

⋃
i
Gi.

III. MAIN RESULTS

Theorem 1. Minimum Number of Edges for Equal Rates:
Every m-vertex graph supporting a rate vector r = (r, · · · ,r) has
at least:

g(r,m) = m(m−1)−2 · e
(

m,

⌊
1
r

⌋)
(2)

edges, if 1
m ≤ r ≤ 1 (g(r,m) is the number of edges in the

complement of T (m,� 1
r �)). Moreover, there is a unique graph,

up to isomorphism, that has exactly g(r,m) edges and supports
the rate vector r = (r, · · · ,r). This theorem holds for all cases
(linear or non-linear, one-shot or asymptotic).

Remark 2: This theorem shows that there is a unique (up to
isomorphism) critical graph with minimum number of edges for
both one-shot and asymptotic cases.

Remark 3: Theorem 1 is valid for 1
m ≤ r ≤ 1. For the case

r > 1, there is no graph that supports the rate vector r=(r, · · · ,r)
since the rate of each node cannot be greater than one. When
r < 1

m , it is possible to send all messages as the public message,
and hence no side information is needed. Therefore, the empty
graph is sufficient in this case.

Theorem 2. Additivity of Index Coding Capacity Region:
a) Given a graph G = (V ,E), suppose that G′ and G′′ are

subgraphs of G induced on vertex sets V ′ and V ′′. In
addition, assume that V ′ and V ′′ partition V and there
exist no edge like e = (u,v) in E that starts from u ∈ V ′

and ends up in v ∈ V ′′, i.e., no directed edge from G′ to
G′′ exists. Then, elimination of all the directed edges from
G′′ to G′ will not change the rate region in the one-shot
linear, asymptotic linear, and asymptotic non-linear index
coding problems. However this statement does not hold
for all one-shot non-linear index coding problems.

b) [Optimality of a simple time-division strategy]. Take an
index coding problem with graph G = G′⋃G′′, such that
there is no edge between G′ and G′′. Let C , C ′ and C ′′

denote the capacity regions of G, G′ and G′′ respectively
(the three capacities are either all in the sense of asymp-
totic linear, or all in the sense of asymptotic non-linear).

Then C =
⋃

α∈[0,1] αC ′ ⊕ (1−α)C ′′ where ⊕ is the direct
sum operator. Alternatively, the index coding region for G
is of the form r= (αr′,(1−α)r′′) for α∈ [0,1] and vector
r′ is in the region of G′ and r′′ is in the region of G′′, and
(αr′,(1 − α)r′′) is the concatenation of the vectors αr′

and (1−α)r′′.
c) Let G1,G2, · · · ,Gl be strongly connected components of

G (as described in part b). Then C =
⋃

α1+···+αl=1 α1C1 ⊕
·· · ⊕ αlCl where Ci denotes the capacity regions of Gi

(either all in the sense of asymptotic linear, or all in the
sense of asymptotic non-linear).

Theorem 3. Critical Graphs are USCS:

a) Every critical graph for linear index coding (one-shot or
asymptotic) and for asymptotic non-linear index coding
is USCS. In particular, removing edges not lying on a
directed cycle does not change the capacity region in
these cases.

b) There exists a critical graph for a one-shot non-linear
index coding problem which is not USCS.

Now, we provide some results on the structure of critical
graphs. The first class of critical graphs that are easy to identify
are bidirectional graphs:

Theorem 4: Any bidirectional graph is critical (by a bidirec-
tional graph we mean one in which a directed edge from node
i to j implies a directed edge from node j to i). On the other
hand this is not true for symmetric criticality; in particular a
bidirectional cycle of size 4 is not symmetric critical.

Theorem 5. Union of Two Critical Graphs is Critical: If G
and H are two critical graphs with distinct vertex sets, then
G∪H is also a critical graph for any of linear/non-linear, one-
shot/asymptotic formulations. Further, if G and H are two sym-
metric rate critical graphs, then G∪H is also a symmetric rate
critical in one-shot linear, asymptotic linear, and asymptotic
non-linear index coding scenarios.

Theorem 6. Two Structures That are Critical:

a) Suppose G = (V ,E) is a directed cycle of length m,
where

V = {1, · · · ,m}, E = {(i, i+1) : 1 ≤ i < m}∪{(m,1)}.

Now, construct a new graph G′ = (V ′,E ′) so that V ′ =
V ∪{m+1} and E ′ = E ∪{(m+1,1),(m+1, i),( j,m+
1),(k,m+ 1)}. Then, if 1 ≤ j < i and i ≤ k ≤ m, G′ is
symmetric rate critical.

b) Suppose G′ = (V ′,E ′) is a graph that satisfies the condi-
tion of part (a). We construct a new graph G′′ = (V ′′,E ′′)
by replacing any vertex u ∈ V ′ by a complete graph
(different vertices can be replaced by complete graphs
of different sizes). Then, G′′ is critical. More specifically,
we replace vertex u with nu vertices u1,u2, · · · ,unu that
are mutually connected to each other. We also draw a
directed edge from ui to v j in G′′ for i ∈ {1,2, · · · ,nu} and
j ∈ {1,2, · · · ,nv} if there exists a directed edge from u to
v in G′.



228 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 2, FEBRUARY 2015

Fig. 2. An example of G, G f , and Gb in the proof of Thm 1. (a) G. (b) G f .
(c) Gb.

IV. PROOFS

A. Proof of Theorem 1

Before stating the proof, we introduce a useful lemma which
is proved in [12]:

Lemma 2: Assume that X is a subset of the vertices of a
graph G = (V ,E) which contains no directed cycle. Then in
every rate vector r = (r1, · · · ,rm) supported by G in non-linear
asymptotic case, we have ∑i∈X ri ≤ 1.

We begin the proof of Theorem 1 by proving the given
lower bound on the minimum number of edges. It suffices to
prove it for the non-linear asymptotic case since it implies
that for all other cases (it is clear that the capacity regions
of the other cases are the subset of the capacity region of
non-linear asymptotic case. So, if r is not in the non-linear
asymptotic capacity region of the graphs with less than g(m,r)
edges, it is not in the capacity region of those graphs for other
cases). Suppose that a given graph G = (V ,E) supports the
rate vector r = (r, · · · ,r) for non-linear asymptotic case. We aim
to construct two new graphs and with the help of Lemmas 1
and 2 find some bounds on the number of edges in these
two graphs. Then we use these bounds to find a bound on
the number of edges in G. Using Lemma 2, every subset of
V (G) whose size is bigger than � 1

r �, has a directed cycle,
because the sum of the rates of the vertices in this subset is
greater than or equal to r × (� 1

r �+ 1) > 1. Then, we consider
an arbitrary order for the vertices of G such as 1, · · · ,m and
construct two new graphs (called “forward” and “backward”
graphs) as follows: G f = (V f ,E f ) and Gb = (V b,Eb) where
V f = V b = V , and E f ,Eb is a partition of E into two sets as
follows: G f contains those edges of G whose direction agrees
with the mentioned order, that is, E f = {(x,y) ∈ E |x < y}. Gb

contains the following edges: Eb = {(x,y) ∈ E |x > y} (for an
example, see Fig. 2). Now, because every cycle in G should
contain at least one edge from both G f and Gb, every subset of
size more than � 1

r � has at least one edge in both G f and Gb.

Now let us construct a bidirectional graph G̃ f on the same
set of vertices as follows: x is connected to y in G̃ f for x 
= y if
an only if (min(x,y),max(x,y)) 
∈ E f . Observe that G̃ f is like
the complement of G f if we ignore the edge arrows of G f . Simi-
larly, G̃b is constructed as the complement of Gb if we ignore the
direction of arrows in it. Since every subset of size more than
� 1

r � has at least one edge in both G f and Gb, we can conclude

that G̃ f and G̃b do not have a clique of size � 1
r �+ 1. Using

Lemma 1, the number of edges of both G f and Gb is at least(
m
2

)
− e

(
m,

⌊
1
r

⌋)
=

g(r,m)

2
. (3)

Hence, G itself has at least g(r,m) edges.
Next, we will show that the complement of T (m,� 1

r �) sup-
ports the rate r. It suffices to show this for one-shot linear
coding and it implies that for all cases there exists a graph
which supports the rate r. Let m = a� 1

r �+ b for some a ≥
0,b∈ {0,1,2 · · · ,� 1

r �−1}. Then we construct G as complement
of T (m,� 1

r �) so that it consists of b cliques of size a+ 1, and
� 1

r �−b cliques of size a.1 Then one can verify that G has g(r,m)
edges. In addition, if every node desires only one bit and we
transmit the XOR of the bits in every clique, every vertex can
decode its message, and the rate of every message equals to

1
� 1

r �
≥ r. Furthermore, it is obvious that this is a one-shot linear

coding. Thus there is a graph which supports the rate r.
Lastly, to show that no other graph with exactly g(r,m) edges

supports r, consider a graph G that has g(r,m) edges and sup-
ports the rate vector r = (r, · · · ,r) in non-linear asymptotic case
(it suffices to show this for the non-linear asymptotic case and
it will imply other cases). According to our previous argument,
if we construct G̃ f and G̃b as discussed before, each of them
should have exactly e(m,� 1

r �) edges. As they cannot have a
clique of size � 1

r �+ 1, Lemma 1 gives that they should have
the structure mentioned in this lemma. So, the only remaining
step is to show that the independent sets in G̃ f and G̃b coincide
on each other. Suppose this does not hold, that is, there are two
vertices where there is an edge between them in G̃b, but not in
G̃ f . Let us call these two vertices u and v. (equivalently, there
is an edge between u and v in G f , but not in Gb). Choose one
vertex from each of the � 1

r � independent sets of G̃ f such that u
is chosen and let us denote this set by X . Then we claim that
X ∪{v} does not contain any cycle in G. Note that if a cycle
exists, it should include the edge between u and v, because it is
the only edge in X ∪{v} in G f and the cycle should have at least
one edge from G f . Now the other edges in the cycle form a path
from v to u in Gb. As every component of Gb is a clique then
u and v should have an edge, which contradicts our assumption
that u and v are disconnected in Gb. �

B. Proof of Theorem 2

The proof of part (a) for one-shot non-linear index coding
follows from part (b) of Theorem 3. Other cases are considered
below:

Proof of Part (a) for Asymptotic Non-Linear Index Coding:
Consider an arbitrary code on the original graph with zero
probability of error. Let K = f (W1,W2, · · · ,Wm) be the public
message. The rate of this code is r = (r1,r2, · · · ,rm) where
ri = log(|Wi|)/ log(|K |).

The union of G′ and G′′ corresponds to the graph G after
elimination of directed edges from G′′ to G′. Take an arbitrary
ε > 0. We create a code for the union of G′ and G′′ that achieves
the rate vector r′ = (r′1,r

′
2, · · · ,r′m) where r′i ≥ ri − ε, with the

probability of error being less than ε. This concludes the proof
(see Remark 1 on index coding with a vanishing probability of
error).

1A clique is a graph where every vertex has a directed edge to every other
vertex.
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We can conceive n i.i.d. repetitions of the given code with
(W n

1 ,W
n
2 , · · · ,W n

m) and public message Kn. The rate of the i.i.d.
code is the same as the original one since

log
(∣∣W n

i

∣∣)= n log(|Wi|) , log(|K n|) = n log(|K |) .

Since the original code had zero error probability, the i.i.d. code
has also a zero probability of error.

We define WG′ as a shorthand for Wi, i ∈ G′, and W n
G′ as

a shorthand for W n
i , i ∈ G′. We define a new code that uses

(K′,K′′) instead of Kn where nodes in G′ decode their messages
using K′ and nodes in G′′ decode their messages using K′′:

• Size of the alphabet of K′, i.e., |K ′|, is less than or equal
to 2n(I(K;WG′ )+δ). Furthermore, the nodes in G′ can use K′

and their side information (which is inside G′) to recover
their message with probability 1− ε.

• Size of the alphabet of K′′, i.e., |K ′′|, is less than or equal
to 2n(H(K|WG′ )+δ). Furthermore, the nodes in G′′ can use K′′

and part of their side information of messages inside G′′ to
recover their message with probability 1− ε.

This would finish the proof since log(|K ′| · |K ′′|) is equal to
n(log(|K |) + 2δ) and by choosing δ small enough we can
ensure that the rate of the new code is within ε of the original
code.

Construction of K′′: We have minwG′ H(K|WG′ = wG′) ≤
H(K|WG′). Thus, it suffices to construct K′′ whose alphabet size
is less than or equal to 2n(H(K|WG′=wG′ )+δ) where wG′ is the one
that minimizes H(K|WG′ = wG′).

Let us first assume in the original problem that WG′ = wG′

has occurred and the nodes in G′′ = G−G′ are all aware of
this (thus, if some of the nodes in G′′ had partial information
about messages of nodes in G′, we are giving all of them a full
access to WG′ and this should only help them in decoding their
message). Thus the nodes in G′′ should be able to recover their
intended messages using K and their side information inside
G′′ with probability one, when WG′ = wG′ is fixed. We can use
the conditional joint pmf p(K,WG′′ |WG′ = wG′) as a joint pmf
q(k,wG′′) on K, WG′′ and think of it as an index code on nodes in
G′′, since WG′′ is independent of WG′ , the marginal distribution
of q(wG′′) is uniform and coordinatewise mutually independent;
furthermore K will be a function of WG′′ when WG′ = wG′ is
fixed. The public message in the index coding problem on G′′ is
produced from q(k|WG′′) = p(k|WG′′ ,WG′ = wG′) and it leads to
zero error probability.

If we have n i.i.d. copies of the pmf q (still a code with zero
error probability), the corresponding public message can be
compressed using Shannon’s source coding theorem and sent
to the parties, where nodes in G′′ can first decompress it and
then use it to run their decoding algorithm. Compression can be
achieved at a rate of Hq(K)+ δ = H(K|WH = wH)+ δ bits at
the cost of a probability of error of ε, which is tolerated.

Note that the public message K′′ is only meant for the use of
subgraph G′′; to construct the code for G′′ we have pretended
that WG′ = wG′ has happened in each copy of G′. It is clear that
K′′ contains no useful information about W n

G′ that has actually
occurred, and nodes in G′ can ignore K′′.

Construction of K′: Let p(k,wG′) denote the joint distribu-
tion of K and WG′ in the original code. The decoding function

used by node i ∈ G′ can be expressed as the conditional pmf
p(ŵi|k,(w j) j:(i, j)∈E ) where Ŵi is the reconstruction of node i.
Of course Ŵi = Wi since perfect reconstruction is assumed.
Therefore the joint pmf

p(k,wG′ , ŵG′) = p(k,wG′)∏
i∈G′

p(ŵi|k,(w j) j:(i, j)∈E )

has the property that the marginal distribution on WG′ and ŴG′

is equal to

p(WG′ = wG′ ,ŴG′ = ŵG′) = ∏
i∈G′

1[wi = ŵi]. (4)

We use the covering lemma (rate-distortion coding) to create a
code for nodes in G′. Let δ > 0 be an arbitrary small real.

Codebook Generation: Assume that the transmitter and the
receivers initially share a codebook of 2n(I(K;WG′ )+δ) sequences

Kn(1),Kn(2), · · · ,Kn
(

2n(I(K;WG′ )+δ)
)

each being an i.i.d. sequence according to p(k).
Encoding: Having W n

G′ at the transmitter, it finds an in-
dex j such that Kn( j) is jointly typical with W n

G′ (i.e.,
(Kn( j),W n

G′) ∈ T n
δ (p(k,wG′))), where we use the notion of

typicality given in [1, 2.4]. Since the number of generated Kn(·)
sequences is larger than 2n(I(K;WG′ )+δ) by the covering lemma
[1, Lemma 3.3], this can be done with high probability. The
transmitter then sends the index j as K′ to the receiver (the
cardinality of the alphabet of K′ allows it to send the index j).

Decoding: Having received K′ = j, nodes i ∈ G′ create
Ŵ n

i as a function of Kn( j) and their side information (they
use the same decoding functions of the original code). More
precisely, if we denote the joint pmf of Kn( j) and W n

G′ by
qKn( j),W n

G′
(k,wn

G′), the joint pmf of the constructed rv’s is
equal to

qKn( j),W n
G′
(k,wn

G′)∏
i∈G′

n

∏
s=1

p
(
ŵis|ks,(w js) j:(i, j)∈E

)
If (Kn( j),W n

G′) ∈ T n
δ (p(k,wG′)), with high probability we will

have (Kn( j),W n
G′ ,Ŵ n

G′) ∈ T n
δ′ (p(k,wG′ , ŵG′)) for any δ′ > δ,

as we have passed Kn( j), W n
G′ through the i.i.d. conditional

pmf of p(ŵG′ |k,wG′) (Conditional typicality lemma [1, 2.5]).
Therefore Kn( j), W n

G′ , Ŵ n
G′ will be joint typical with high

probability. Thus for any i ∈G′, with high probability (W n
i ,Ŵ

n
i )

will be jointly typical. We claim that two sequences (W n
i ,Ŵ

n
i )

jointly typicality in the sense of [1, 2.4] is equivalent with their
equality. Equation (4) implies that p(WG′ = wG′ ,ŴG′ = ŵG′)> 0
if and only if wG′ = ŵG′ , and hence for any pair (wG′ , ŵG′) where
wG′ 
= ŵG′ we have (using notation of [1]) that∣∣Π(

wG′ , ŵG′ |W n
i ,Ŵ

n
i

)
−p(wG′ , ŵG′)

∣∣≤δ′ · p(wG′ , ŵG′) = 0.

Hence Π(wG′ , ŵG′ |W n
i ,Ŵ

n
i ) = p(wG′ , ŵG′) = 0 for any wG′ 
=

ŵG′ , implying that W n
i = Ŵ n

i . Therefore with high proba-
bility the decoders will successfully decode their intended
messages. �
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Proof of Part (a) for One-Shot Linear Index Coding: As-
sume that there exists a valid one-shot linear coding scheme
for a graph G with |V | = m vertices such that Wi =
(wi1,wi2, · · · ,wili), where wi j ∈ F for some field F. Addition-
ally, assume that f (W1,W2, · · · ,Wm) = (t1, t2, · · · , tn) where tk is
equal to

tk =
m

∑
i=1

li

∑
j=1

ci jk ·wi j, ∀1 ≤ k ≤ n, (5)

for some coefficients ci jk in the field F. In other words, the
following matrix is used for the linear map:

C=

⎡⎢⎣c111 c121 · · · c1l11 c211 · · · cmlm1
...

c11n c12n · · · c1l1n c21n · · · cmlmn

⎤⎥⎦ .

Without loss of generality we can assume that C is in the
row echelon form, since elementary row operation on C is
equivalent to using invertible linear combinations of t1, t2, · · · , tn
instead of these variables. We represent the first non-zero
elements of each row of C by a sequence of indices

(ik,jk), k = 1,2, · · · ,n,jk ≤ lik (6)

that are increasing in a lexicographical order, i.e., either ik <
ik+1 holds or both ik = ik+1 and jk < jk+1 hold. Further we
must have ci jk = 0 if (i, j) is less than (ik,jk) in the lexical
order.

Since all nodes are able to decode their messages via
(t1, · · · , tn) and their side information, there should exist coef-
ficients αi j1,αi j2, · · · ,αi jn for each message wi j (1 ≤ j ≤ li)
so that:

n

∑
k=1

αi jktk (7)

is equal to wi j plus a linear combination of wi′ j′ that are
available to node i as side information, i.e.,

n

∑
k=1

αi jktk = wi j + ∑
i′, j′:(i,i′)∈E

wi′ j′ · γi′ j′ , (8)

for some coefficients γi′ j′ .
Now, we turn to the proof. Without loss of generality, sup-

pose that the vertices of G′ are m−|V ′|+1,m−|V ′|+2, · · · ,m,
where G′ was defined in the statement of the theorem. Note
that this assumption and the assumption that C is in the row
echelon form do not contradict the generality together. One can
simply label the vertices of G such that nodes in G′ be labeled
with m− |V ′|+ 1,m− |V ′|+ 2, · · · ,m and then applies some
elementary row operations to find C in row echelon form. The
statement of the theorem basically asks us to show that there
is no need for nodes in G′′ to know (as side information) any
of the messages for nodes in G′, i.e., Wi, i ∈ G′. To show this,
we first define a new encoding linear map f ′ and then prove
that it enables nodes in G′′ to recover their intended messages
without any need to have access to Wi, i ∈ G′. Nodes in G′ are
also shown to be still able to decode their messages with the

Fig. 3. A pictorial representation of the row echelon form of C that clarifies
the definition of s. Gray elements are zero and green elements are non-zero. To
define c′i jk we set the values inside the red box to be zero.

encoding function f ′ using their side information (nodes in G′

do not know any of the messages of nodes in G′′ since G′ does
not have any outgoing edge). Thus, the edges between G′ and
G′′ can be removed.

Part 1: Definition of a new linear encoding function f ′:
Let s = min{k | ci jk = 0,∀1 ≤ i ≤ m−|V ′|,1 ≤ j ≤ li}. Fig. 3
clarifies the definition of the s. Note that {k | ci jk = 0,∀1 ≤
i ≤ m− |V ′|,1 ≤ j ≤ li} cannot be empty. We prove this by
contradiction. Suppose that the mentioned set is empty, then for
each 1 ≤ k ≤ n there exists a ci jk 
= 0 that i ≤ m− |V ′|. As a
result,

∀1 ≤ k ≤ n : ik ≤ m−|V ′|. (9)

Now assume that θ is the smallest number that αm1θ 
= 0, then:

n

∑
k=1

αm1k · tk =
n

∑
k=θ

αm1k · tk

=
n

∑
k=θ

αm1k ·
(

m

∑
p=1

lp

∑
q=0

cpqk ·wpq

)

Note that the coefficient of wiθjθ in the above statement is
∑n

k=θ αm1k · ciθjθk. Because (iθ,jθ) is lexicographically smaller
than (ik,jk) for any k > θ, ciθjθk = 0. Then

n

∑
k=θ

αm1k · ciθjθk = αm1θ · ciθjθθ 
= 0 (10)

Note that iθ ≤m−|V ′| by (9), so iθ ∈G′′. Hence, wiθjθ is not
provided as side information to node m, which is in G′. As a re-
sult, the non-zero coefficient of wiθjθ in ∑n

k=1 αm1k · tk is in con-
tradiction to (8). So we have proved that {k | ci jk = 0, ∀1 ≤
i ≤ m − |V ′|, 1 ≤ j ≤ li} is a non-empty set and thus
s is well-defined.

Further let

c′i jk =

{
0 k < s and i > m−|V ′|
ci jk otherwise

(11)

and t ′k = ∑m
i=1 ∑li

j=1 c′i jk · wi j for all 1 ≤ k ≤ n. Set
f ′(W1,W2, · · · ,Wm) = (t ′1, t

′
2, · · · , t ′n). Observe that (11) implies

that t ′k = tk for all k ≥ s.
Part 2: Showing that nodes in G′ are able to decode

their message by using (t ′1, t
′
2, · · · , t ′n) and their side information:

Consider the coefficients αi jk for decoding of the original
linear mapping given in (7). We claim for any r ∈ G′ (i.e.,
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r > m−|V ′|) that αr j1 = · · ·=αr j(s−1) = 0 for every 1 ≤ j ≤ lr.
This completes the proof since for every r ∈ G′:

n

∑
k=1

αr jktk =
n

∑
k=s

αr jktk =
n

∑
k=s

αr jkt ′k. (12)

Equations (8) and (12) illustrate that every node r ∈G′ is able to
obtain wr j in the new coding scheme by calculating ∑n

k=s αr jkt ′k.
We prove αr j1 = · · · = αr j(s−1) = 0 for every 1 ≤ j ≤ lr by

contradiction. Suppose that x is the smallest index that αr jx 
= 0
and x < s. By the definition of s, ix ≤ m−|V ′| (ix ∈ G′′). It is
also clear that the definition of x results in the fact that αr jy = 0
for all y < x. Additionally, because (ik,jk),k = 1,2, · · · ,n is
strictly increasing cixjxy = 0 for all y > x. Thus, as

n

∑
k=1

αr jk · tk =
n

∑
k=1

αr jk ·
(

m

∑
p=1

lp

∑
q=1

cpqk ·wpq

)
, (13)

the coefficient of wix,jx in ∑n
k=1 αr jk · tk is:

rε =

⎛⎝ logF |W1|
n′+n′′

,
logF |W2|

n′+n′′
, · · · ,

log
F

∣∣∣W|V ′|+|V ′′|

∣∣∣
n′+n′′

⎞⎠

=

⎛⎝ n′

n′+n′′

⎛⎝ logF |W1|
n′

, · · · ,
logF

∣∣∣W|V ′|

∣∣∣
n′

⎞⎠ ,
n′′

n′+n′′

×

⎛⎝ logF

∣∣∣W|V ′|+1

∣∣∣
n′′

, · · · ,
logF

∣∣∣W|V ′|+|V ′′|

∣∣∣
n′′

⎞⎠⎞⎠
=

(
n′

n′+n′′
r′,

(
1− n′

n′+n′′

)
r′′
)
. (14)

n

∑
k=1

αr jk · cixjxk

=
x−1

∑
k=1

0 · cixjxk +αr jx · cixjxx +
n

∑
k=x+1

αr jk ·0 (15)

=αr jx · cixjxx 
= 0 (16)

which is in contradiction to the independency of ∑n
k=1 αr jktk

from wixjx , that was guaranteed by (8). (Note that r ∈ G′ and
ix ∈ G′′, so r does not have wixjx as side information).

Part 3: Showing that under f ′ decoding is possible without
the need for nodes in G′′ to know messages for nodes in G′: For
every i ∈ G′′, let

βi jk =

{
0 k ≥ s;

αi jk k < s. (17)

We claim that for every i ∈ G′′:

n

∑
k=1

βi jkt ′k = wi j + ∑
i′, j′:(i,i′)∈E and i′ 
∈G′

wi′ j′ · γi′ j′ , (18)

where γi′ j′ is given in (8). This shows that nodes at G′′ are
able to decode their messages using (t ′1, t

′
2, · · · , t ′n) and their side

information in G′′ (excluding side information from nodes at
G′). We have:

n

∑
k=1

βi jkt ′k =
s−1

∑
k=1

αi jkt ′k +
n

∑
k=s

0 · t ′k (19)

=
s−1

∑
k=1

αi jk ·
(

m

∑
p=1

lp

∑
q=0

c′pqk ·wpq

)
(20)

=
s−1

∑
k=1

αi jk ·
(

m−|V ′|

∑
p=1

lp

∑
q=0

c′pqk ·wpq

)
(21)

=
s−1

∑
k=1

αi jk ·
(

m−|V ′|

∑
p=1

lp

∑
q=0

cpqk ·wpq

)
, (22)

where (21) and (22) follow from the definition of c′i jk in (11).
Note that the expression of (22) does not include any of wi j for
i > m−|V ′|. Moreover, the coefficient of wi j for i ≤ m−|V ′|
are the same as those in ∑n

k=1 αi jktk. This establishes (18). �
Proof of Part (a) for Asymptotic Linear Index Coding:

Assume that r = (r1, · · · ,rm) is an achievable rate vector in
asymptotic linear index coding problem associated with G.
Then there exists a sequence of codes like C1,C2, · · · whose
rate vector converges to r. Using Theorem 2 part a for one-
shot linear index coding, for each Ci there exists a code like
C′

i for the index coding problem introduced by G′ ∪G′′ whose
rate vector equals the rate vector of Ci. Thus, the rate vector
of C′

1,C
′
2, · · · converges to r. This results in the fact that r =

(r1, · · · ,rm) is achievable in asymptotic linear index coding
problem associated with G′ ∪G′′. �

Proof of Part (b): The proof has two parts: first we show that⋃
α∈[0,1] αC ′ ⊕ (1−α)C ′′ ⊆ C and then we will finish the proof

by showing that C ⊆ ⋃
α∈[0,1] αC ′ ⊕ (1−α)C ′′.

Before starting the proof, let us label the vertices of G so that
the vertices of G′ come first.

Proving
⋃

α∈[0,1] αC ′ ⊕ (1−α)C ′′ ⊆ C : Take an arbitrary
vector r′ in C ′. Then we can allocate all of our resources for
G′ and do not send anything for G′′. This shows that (r′,0) is
in C . Similarly for any r′′ in C ′′, we have that (0,r′′) is in C .
Using the standard time-sharing techniques, one can show that
the capacity region of the index coding problem is a convex set.
Therefore for any α ∈ [0,1] the rate (αr′,(1−α)r′′) ∈ C . This
completes the proof.

Proving C ⊆⋃
α∈[0,1] αC ′⊕(1−α)C ′′: For any rate vector

r ∈ C , there exist a sequence of codes like C1,C2, · · · whose
rates converge to r. Take some ε > 0 and a code described by
encoding function f whose rate rε is within ε distance of r.

Linear Case: Suppose that f : W1 × W2 × ·· · ×
W|V ′|+|V ′′| → F

n. In the proof of the part (a), we showed that

there exist encoding functions f ′ : W1×W2×·· ·×W|V ′| →F
n′

and f ′′ : W|V ′|+1 × W|V ′|+2 × ·· · × W|V ′|+|V ′′| → F
n′′ which

are respectively valid for G′ and G′′. Additionally, the size of
the range of the concatenation of f ′ and f ′′ equals the size of
the range of f , i.e., n = n′+n′′. Hence, if we call the rates of f ′

and f ′′, r′ and r′′, rε equals the expression given in (14).
Since r′ ∈ C ′ and r′′ ∈ C ′′, above statement results in the fact

that rε lies in
⋃

α∈[0,1] αC ′ ⊕ (1−α)C ′′. By the definition of the
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asymptotic capacity region, C ′ and C ′′ are closed sets. We are
done with the proof by noting that rε can be made arbitrarily
close to r.

Non-Linear Case: Suppose that f : W1 × W2 × ·· · ×
W|V ′|+|V ′′| → {1,2, · · · ,N}. In the proof of the part (a), we
showed that we can find encoding functions f ′ : W n

1 ×W n
2 ×

·· ·×W n
|V ′| → {1,2, · · · ,2n(K′+δ)} and f ′′ : W n

|V ′|+1×W n
|V ′|+2×

·· · × W n
|V ′|+|V ′′| → {1,2, · · · ,2n(K′′+δ)} in which K′ and K′′

satisfy N = 2K′+K′′
, δ is an arbitrary positive real number, and

an appropriate n can be found for any fixed δ so that such
functions exist. Moreover, f ′ and f ′′ are respectively valid for
G′ and G′′ over the alphabet sets of W n

1 ,W
n

2 , · · · ,W n
|V ′| and

W n
|V ′|+1,W

n
|V ′|+2, · · · ,W

n
|V ′|+|V ′′|. Hence, if we call the rates of

f ′ and f ′′, r′ and r′′, rε equals:⎛⎝ log |W1|
logN

,
log |W2|

logN
, · · · ,

log
∣∣∣W|V ′|+|V ′′|

∣∣∣
logN

⎞⎠
=

⎛⎝ log |W n
1 |

n logN
,

log |W n
2 |

n logN
, · · · ,

log
∣∣∣W n

|V ′|+|V ′′|

∣∣∣
n logN

⎞⎠
=

⎛⎝ log |W n
1 |

n(K′+K′′)
,

log |W n
2 |

n(K′+K′′)
, · · · ,

log
∣∣∣W n

|V ′|+|V ′′|

∣∣∣
n(K′+K′′)

⎞⎠
=

⎛⎝ K′+δ
K′+K′′

⎛⎝ log |W n
1 |

n(K′+δ)
, · · · ,

log
∣∣∣W n

|V ′|

∣∣∣
n(K′+δ)

⎞⎠ ,

K′′+δ
K′+K′′

⎛⎝ log
∣∣∣W n

|V ′|+1

∣∣∣
n(K′′+δ)

, · · · ,
log

∣∣∣W n
|V ′|+|V ′′|

∣∣∣
n(K′′+δ)

⎞⎠⎞⎠
=

(
K′+δ

K′+K′′ r
′,

K′′+δ
K′+K′′ r

′′
)

=
K′+K′′+2δ

K′+K′′

(
K′+δ

K′+K′′+2δ
r′,

K′′+δ
K′+K′′+2δ

r′′
)

Thus,

K′+K′′

K′+K′′+2δ
rε =

(
K′+δ

K′+K′′+2δ
r′,

K′′+δ
K′+K′′+2δ

r′′
)
.

As r′ ∈ C ′ and r′′ ∈ C ′′, K′+K′′
K′+K′′+2δ rε lies in

⋃
α∈[0,1] αC ′ ⊕ (1−

α)C ′′ for any δ > 0. Since
⋃

α∈[0,1] αC ′ ⊕ (1−α)C ′′ is a closed
set and we can make δ and ε as close to zero as we want, we
will be done. �

Proof of Part (c): We prove this part using induction on
l. If l = 1, then G = G1 and C = C1 so we are done. Now
assume that l > 1. Lets call the vertex set of Gi, Vi. It is
straightforward to see that every directed graph has a strongly
connected component that does not contain any outgoing edges,
i.e., there exists i so that there is no edge in G that starts
from the vertices of Vi and ends in V −Vi. Set V ′ = Vi and
V ′′ = V −Vi. We denote the subgraph of G induced on V ′′ by
G̃. Using parts (a) or (b) on V ′ and V ′′ we have:

C =
⋃

αi∈[0,1]
αiCi ⊕ (1−αi)C̃ (23)

Fig. 4. In the index coding problem associated with this graph, removing the
edges which belong to no cycle implies a larger public message rate.

where C̃ is the capacity region of G̃. Since G̃ has exactly l − 1
strongly connected components (G1, · · · ,Gi−1,Gi+1, · · · ,Gl), by
induction we have:

C =
⋃

∑1≤ j≤n, j 
=i α j=1

(
⊕

1≤ j≤n, j 
=i

α jCi

)
(24)

(23) and (24) clearly complete the proof.

C. Proof of Theorem 3

1) Proof of Part (a)—Linear one-shot case: If G is USCS,
then proof is finished. Otherwise, G contains an edge like
e = (u,v) which is not located in any cycle. Let V1 be the set
of vertices that can be reached from v. Moreover, let V2 be
the set of vertices that cannot be reached from v. It is easy to
verify that there will be no edge that starts from V1 and finishes
in V2. Using part (a) of Theorem 2, we can remove all edges
between V1 and V2 including e, so that the rate region does not
shrink. As the number of the edges of G is finite, by repeating
this process we can find a USCS subgraph of G like G′ whose
rate region equals the rate region of G. Hence, if G is a critical
graph, it should be equal to G′ which is USCS. In other words,
any critical graph for one-shot linear index coding is USCS.

The proof for Linear asymptotic and Non-linear asymptotic
index coding using part (a) of Theorem 2 is similar.

2) Proof of Part (b): To prove this part we need to show that
a critical graph exists for one-shot non-linear case that is not
USCS.

Consider the graph given in Fig. 4. We call this graph G =
(V ,E). Assume that Wi = {0,1} for all 1 ≤ i ≤ 5 and W6 =
{0,1,2,3,4}. We have the following claim.

Claim 1: Sending a symbol from {1,2, · · · ,32} as the public
message suffices for every node to decode its message. How-
ever, if we remove the edges connected to node 6, which do
not belong to any cycle, we need at least 35 symbols to have a
successful transmission of the messages.

This claim establishes the desired result, since if G is critical
it would be an instance of a non-USCS graph that is critical. If G
is not critical, there is a subgraph G′ of it (obtained by removing
edges from G) that is critical; that is the graph G′ is such that
sending a symbol from {1,2, · · · ,32} as the public message
suffices for every node to decode its message. However any
further removal of edges from G′ results in a graph that does
not have this property. By the above claim, the minimal graph
G′ should contain at least one of the edges connected to the
node 6; since if not, G′ would be a subgraph of the graph shown
in the claim to need at least 35 symbols. Therefore, G′ contains
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an edge that is not on any cycle. Hence it is a non-USCS and
critical graph.

We now turn to the proof of the claim. In order to construct
the coding scheme using 32 symbols for G, first note that
W1W2W3W4W5 forms a binary sequence of the length 5. Based
on the value of W6, we XOR this sequence with one the
following sequence: 00000, 10001, 01111, 01100, 10111, that
is, if W6 is 0 we XOR the sequence with 00000, if it is 1 we
XOR it with 10001, and so on. Then, we transmit the result
as the public message (the public message has 32 different
possibilities and can be transmitted). Let us denote the 5-bit
public message by W̃1W̃2W̃3W̃4W̃5. It is sufficient to show that
every node can decode its message with the help of the public
message and its side information. First of all, because the node 6
knows the message of 1 to 5, it can XOR their message by the
public message and from the XOR decode its message. For the
other nodes, note that Wi ⊕ W̃i for 1 ≤ i ≤ 5 is a function of
the side information of node i, and therefore, node i can decode
its message. We explain the decoding process for node 1; the
decoding process for other nodes is similar. Node 1 knows W2

and W5. By comparing these two bits with W̃2 and W̃5, node 1
can exactly recover W6 if it is equal to 0, 2 or 3. If W6 is equal
to 1 or 4, node 1 cannot find the exact value of W6. However in
both cases of W6 = 1, 4 we have W̃1 = ¬W1, and by flipping W̃1

the first node can recover its intended bit.
In order to prove that if we remove the edges connected

to node 6, at least 35 symbols are needed, suppose that there
exists a coding scheme which requires at most 34 symbols.
First notice that the sets { f (w1,w2, · · · ,w6) : w1,w2, · · · ,w5 ∈
{0,1}} for different w6 ∈ {0,1,2,3,4} are mutually disjoint
(Otherwise node 6 cannot decode its message using its side
information and public message). According to Pigeonhole
Principle, we can conclude that there exists w6 ∈ {0,1,2,3,4}
so that if W6 = w6, public message gets at most 6 distinct
different values when we vary the w1,w2, · · · ,w5, i.e., the car-
dinality of the set { f (w1,w2, · · · ,w6) : w1,w2, · · · ,w5 ∈ {0,1}}
is at most 6 (If not, we would have 5 sets of the size at
least 7, and it contradicts with our assumption that the public
message has 34 different symbols). For this value of w6, con-
sider the following function over five variables w1,w2, · · · ,w5:
f̃ (w1,w2, · · · ,w5) = f (w1,w2, · · · ,w5,w6). Since W6 was inde-
pendent of (W1, · · · ,W5) and we have zero probability of error,
f̃ is a valid encoding function for a cycle of length 5. This
contradicts Lemma 3 below. �

Lemma 3: The bidirectional cycle of length 5 with Wi =
{0,1} needs a public message of alphabet size 7 to achieve a
zero probability of error for the one-shot problem.

Proof: We prove this lemma by contradiction. Assume
otherwise that there exists a coding scheme that uses a public
message with 6 possibilities. As there are 32 combinations
of the messages of the nodes, from the Pigeonhole Princi-
ple, we conclude that the encoding function maps at least 6
combinations of the messages to one symbol, i.e., there are
six sequences of (w1i,w2i, · · · ,w5i) ∈ {0,1}5, i = 1,2, · · · ,6,
whose f (w1i,w2i, · · · ,w5i) are equal, i.e., their corresponding
public message is the same. Thus, the nodes should be able
to recover their own messages using their side information. In
other words, for instance for node 1, if w1i 
= w1i′ for some i

and i′, then we should have (w2i,w5i) 
= (w2i′ ,w5i′). Thus the
six sequences should be distinguishable, where we call two
sequences (w1,w2, · · · ,w5) and (w′

1,w
′
2, · · · ,w′

5) distinguishable
if for each i ∈ {1,2, · · · ,5} either wi = w′

i or the w j 
= w′
j for

some j : (i, j) ∈ E .
Given a sequence (w1,w2, · · · ,w5), consider the graph in-

duced on the set of vertices { j : w j = 1}. We call the sequence
(w1,w2, · · · ,w5) “good” if the induced graph does not contain
a vertex of degree zero (i.e., is connected). For instance, in a
cycle of size 5 if we take (w1,w2, · · · ,w5) = (1,1,1,0,0), the
induced graph would be on nodes 1, 2, 3 which is connected.
However (w1,w2, · · · ,w5) = (1,1,0,1,0) corresponds to the
induced graph on nodes 1, 2, 4 which is not connected since
node 4 is not connected to nodes 1 and 2. It is easy to verify
that (w1,w2, · · · ,w5) and (w′

1,w
′
2, · · · ,w′

5) are distinguishable if
and only if their bitwise XOR is good. For instance (1,1,0,1,0)
and (0,0,0,0,0) are not distinguishable (by node 4) since their
XOR, (1,1,0,1,0) is not good.

Now, we know that the XOR of any two of (w1i,w2i, · · · ,w5i),
1 ≤ i ≤ 6 is good. We show that this cannot happen. Without
loss of generality, we can assume that one of the six sequences
is the all zero sequence. Thus, we should look for 5 sequences
that are individually good, and their pairwise bitwise XOR is
also good. Non-existence of such sequences is verified by a
computer program. �

D. Proof of Theorem 4

Suppose that G = (V ,E) is a bidirectional graph where
V = {1,2, · · · ,m}. To show that G is critical, we need to show
that there exists a rate vector r = (r1,r2, · · · ,rm) for every e =
(u,v) ∈ E that is achievable in G, but not achievable in G− e.
We define r in the following manner:

ri =
{

1 i f i = u or i = v
0 otherwise.

To show that r is achievable in G, suppose that Wi is the message
of node i, and Wi ∈ Wi where:{

Wi = {0,1} if i = u or i = v
Wi = {0} otherwise.

Now, if we send Wu ⊕Wv as public message, then u and v can
decode their message, because they have the message of each
other as side information and the sum of their message. As Wi

has only one element for i 
= u,v, the other vertices can trivially
decode their message. Therefore, r is supported by G.

Additionally, since the set {u,v} in G− e has no directed
cycle, Lemma 2 implies that for every r′ = (r′1,r

′
2, · · · ,r′m)

supported by G− e, r′u + r′v ≤ 1. Thus, r cannot be supported
by G− e.

Next we show that a cycle of size four with vertices {1, 2, 3,
4} and edges {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1),
(1, 4)}) is not symmetric rate critical. If this graph supports the
rate vector r = (r,r,r,r), as the set {1, 3} has no directed cycle,
Lemma 2 gives that r ≤ 1

2 . In addition, consider the subgraph
H of the cycle with edges {(1, 2), (2, 1), (3, 4), (4, 3)}. If we
send two bits (W1 ⊕W2,W3 ⊕W4) as public message, then all
nodes can decode their message. Hence, the rate ( 1

2 ,
1
2 ,

1
2 ,

1
2 ) is
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achievable in H. Now, since removing edges (2, 3), (3, 2), (4,
1), (1, 4) do not change the symmetric capacity region of cycle
of size four, it is not symmetric rate critical. �

E. Proof of Theorem 5

1) Criticality of G∪H: In order to show the criticality of G∪
H we need to show that by eliminating every edge like e from
G∪H, the capacity region of the index coding problem related
to G∪H shrinks strictly. Without loss of generality assume that
e ∈ EG. As G is a critical graph, there exists a rate vector like
r that supports G, but not G′(VG,EG −{e}). Now, consider a
rate vector for the index coding problem introduced by G∪H in
which the rates of nodes in H are all zero and rates of the nodes
in G equals r. This rate vector is evidently admissible for G∪H,
but not for G′ ∪H (which is G∪H after elimination of e).

2) Symmetric Criticality of G∪H in Asymptotic Scenarios:
Showing that the maximal symmetric rate also reduces after we
remove an edge from G∪H is more challenging. Let r1 and
r2 be the maximal symmetric rate for G and H respectively. It
is clear that concatenation of these two coding functions with
proportion of r2

r1+r2
and r1

r1+r2
for G and H respectively, results

in a coding function for G∪H with the symmetric rate of r =
(r1r2)/(r1 + r2).

We claim that this symmetric rate would not be achievable
if any edge like e is removed from G∪H. This will prove the
symmetric criticality of G∪H. We are going to prove this claim
by contradiction. Without loss of generality, assume that e is an
edge of G. We refer to the graph obtained by G after elimination
of e as G′. Suppose that there exists a coding function like f
for G′ ∪H with the symmetric rate of r. From Theorem 2 then,
there exist some α ∈ [0,1] and symmetric rates r′1 and r′2 for G′

and H such that r = αr′1 = ᾱr′2. A simple calculation and using
the fact that r = (r1r2)/(r1 + r2) gives us (1/r′1) + (1/r′2) =
(1/r1)+(1/r2). However this cannot happen since r′1 < r1 and
r′2 ≤ r2, by the symmetric criticality of G and by the definitions
of r1 and r2. This completes the proof by contradiction.

3) Symmetric Criticality of G∪H in One-Shot Linear Sce-
nario: Consider the symmetric one-shot linear index coding
problems defined over G, H, and G ∪ H. Assume that the
alphabet of each node in each of these problems is Fl for some
finite field F. Let n1 be the minimum possible positive integer
number such that there exists a valid linear coding function with
the output size of n1 symbols over F. Define n2 for H in the
same manner. It is clear that there exists an encoding function
for the problem related to G∪H that uses a public message
of n1 +n2 symbols by concatenation of the encoding functions
that use n1 symbols for G and n2 symbols for H. Hence, the
symmetric rate of l

n1+n2
is achievable for the index coding

problem introduced by G∪H.
We are going to show that if G and H are both symmetric

critical, then G ∪ H is symmetric critical too. To prove the
symmetric criticality of G ∪H, we will prove that any valid
coding function for G ∪H needs at least n1 + n2 + 1 public
symbols after removal of any edge like e from G∪H. Without
loss of generality, we assume that e is removed from the G
component of G∪H. We refer to the graph obtained by G after
the removal of e as G′. Then, the graph obtained from G∪H

after the removal of e would be G′ ∪H. Let f be a valid encoding
function for G′ ∪H, we have shown in the proof of part (a) of
Theorem 2 that there exist two valid encoding functions f ′ and
f ′′ for G′ and H so that the concatenation of f ′ and f ′′ has
the same output size to f . As f ′′ is a valid encoding function
for H, its output size is at least n2. In addition, because of the
criticality of G, we know that every valid encoding function for
G′, including f ′, needs at least n1 + 1 symbols. Accordingly,
the concatenation of f ′ and f ′′ has an output size of at least
n1 + n2 + 1. Consequently, the output size of the f is at least
n1+n2+1. This means that G∪H is symmetric critical because
it cannot support the symmetric rate of l/(n1+n2) after removal
of any of its edges.

F. Proof of Theorem 6

1) Proof of Part (a): In the first step of the proof, we will
show that the new graph G′ supports the symmetric rate of r =(

1
m−1 ,

1
m−1 , · · · ,

1
m−1

)
. In the next step, we will show that this

rate will not be achievable if any edge is eliminated. These two
steps will clearly prove this theorem.

(I) Achievability: Let Wi denote the message of node
i, and Wi ∈ Wi = {0,1}. Consider the encoding func-
tion f (W1, · · · ,Wm) = ( f1, · · · , fm) = (W1 ⊕ W2, · · · ,Wj−1 ⊕
Wj,Wj ⊕ Wj+1 ⊕ Wm+1,Wj+1 ⊕ Wj+2, · · · ,Wk−1 ⊕ Wk,Wk ⊕
Wk+1 ⊕Wm+1,Wk+1 ⊕Wk+2, · · · ,Wm−1 ⊕Wm,Wm ⊕W1).

For 1 ≤ l ≤ m, fl is the sum of the side information of node l
and Wl ; therefore node l (for 1≤ l ≤m) can decode its message.
Node m+1 can also consider:

i−1⊕

l=1

fl =
i−1⊕

l=1,l 
= j

(Wl ⊕Wl+1)⊕ (Wj ⊕Wj+1 ⊕Wm+1)

=W1 ⊕Wi ⊕Wm+1.

Since node m + 1 has W1 and Wi as side information, it can
decode its message with the help public message.

As f (W1, · · · ,Wm)∈{0,1}m, it shows the achievability of rate
( 1

m ,
1
m , · · · ,

1
m ). For t 
= j,k, if omit ft from f and construct a new

encoding function f ′, then due to the fact that:

⊕

1≤l≤m,l 
=t

fl = ft ,

each node can obtain f from f ′. So, they can decode their
message by the help of f ′ and their side information. It shows
the achievability of the rate r =

(
1

m−1 ,
1

m−1 , · · · ,
1

m−1

)
.

(II) Unachievability after Edge Removal: To show that G′ is
critical, it suffices to prove that after removing any edge of E ′,
we will need at least m bits of public message. Lemma 2 implies
that if there exists a subset of length m in a graph which does
not contain any cycle, the rate r would not be achievable in the
graph (otherwise the sum of the rates would be m

m−1 which is
greater that 1). Thus, it suffices to show that for every e ∈ E ′,
there exists a subset of V ′, say A, of length at least m such that
the induced subgraph of A in G′ − e has no directed cycle.

First, suppose that e ∈ E . Then we can choose A = V . As A
contains exactly m vertices and the induced graph is a directed
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path which contains no cycle then these edges are critical. For
e = (m+ 1,1), A can be chosen as V ∪ {m+ 1} \ {i}. Same
argument can be made for e = (m+ 1, i). For e = ( j,m+ 1),
A can be chosen as V ∪{m+ 1} \ {k}. Same argument can be
made for e = (k,m+1).

2) Proof of Part (b): We use the same approach from part
(a) to show that the rate r =

(
1

m−1 ,
1

m−1 , · · · ,
1

m−1

)
is achievable

in G′′, and by removing every edge the rate would not be
achievable.

(I) Achievability: Suppose that the message of node ui ∈
V ′′ is Wu,i. Then, define: Wu =

⊕nu
i=1 Wu,i. Similar to part (a),

consider the encoding function f = ( f1, f2, · · · , fm) = (W1⊕W2,
· · · ,Wj−1 ⊕ Wj,Wj ⊕ Wj+1 ⊕ Wm+1,Wj+1 ⊕ Wj+2, · · · ,Wk−1 ⊕
Wk,Wk ⊕Wk+1 ⊕Wm+1,Wk+1 ⊕Wk+2, · · · ,Wm−1 ⊕Wm). Again,
for 1 ≤ l ≤ m and t ∈ {1,2, · · · ,nl}, the lth element of f , fl , is
the sum of the side information and Wl,t . So, these nodes can
decode their message. For t ∈ {1,2, · · · ,nm+1}, node (m+ 1)t

can consider:

i−1⊕

l=1

fl =
i−1⊕

l=1,l 
= j

(Wl ⊕Wl+1)⊕ (Wj ⊕Wj+1 ⊕Wm+1)

=W1 ⊕Wi ⊕Wm+1

=

(
n1⊕

l=1

W1,l

)
⊕
(

ni⊕

l=1

Wi,l

)
⊕
(

nm+1⊕

l=1

Wm+1,l

)
.

By definition of G′′, node (m + 1)t knows W1,1, · · · ,W1,n1 ,
Wi,1, · · · ,Wi,ni ,Wm+1,1, · · · ,Wm+1,t−1,Wm+1,t+1, · · · ,Wm+1,nm+1 as
side information. Therefore, with the help of public message
and its side information (m+ 1)t can decode its message. As
the range of f is subset of {0,1}m, the rate ( 1

m ,
1
m , · · · ,

1
m ) is

achievable. Again, for t 
= j, k, we have that ft =
⊕

1≤l≤m,l 
=t fl .
So, by omitting ft from f , we can achieve the rate r =
( 1

m−1 ,
1

m−1 , · · · ,
1

m−1 ).
(II) Unachievability after Edge Removal: Now, we want to

show that by elimination of any edge in E ′′, r will not be
achievable anymore. As discussed in part (a), it suffices to show
that after removing any edge in E ′′, there will be A ⊂ V ′′ with
at least m vertices which does not contain any directed cycle.
As we have two different types of edges in G′′, we analyze the
impact of edge removal on the capacity region in two different
cases.

Case 1) e = (us,vt) where u 
= v: By definition of G′′, we
have e′ = (u,v) ∈ E ′. In part (a), we proved that
there exists A′ ⊂ V ′ of size m which does not
contain any cycle in G′ − e′. Now, choose A = {l1 :
l ∈ A′, l 
= u,v}∪{us,vt}. If xy and x′y′ ∈ A, then x,
x′ ∈ A′ and x 
= x′. Thus, xy has edge to x′y′ in G′′ if
and only if x has edge to x′ in G′ and because A′ has
no cycle in G′ then A has no cycle in G′′.

Case 2) e = (us,ut): For 1 ≤ u ≤ m, choose A = {us,ut}∪
{((u+ l) mod m)1,1 ≤ l ≤ m−1}, and for u = m+
1. Choose A = {l1 : 1 ≤ l ≤ m, l ≤ j,k}∪{us,ut}. It
can be checked that these two sets contain no cycle.
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