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ABSTRACT

The goal of this paper is to design compact support basis spline
functions that best approximate a given filter (e.g., an ideal Low-
pass filter). The optimum function is found by minimizing the
least square problem (ℓ2 norm of the difference between the de-
sired and the approximated filters) by means of the calculus of
variation; more precisely, the introduced splines give optimal
filtering properties with respect to their time support interval.
Both mathematical analysis and simulation results confirm the
superiority of these splines.
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1. INTRODUCTION

The conversion of continuous-time signals such as multime-
dia data with discrete and digitized samples is a common trend
nowadays. This is mainly due to the existence of powerful tools
in the discrete domain. However, the conversion of continuous-
time signals into the discrete form by means of sampling may
destroy all or some parts of the data. Under certain conditions
on the continuous signal, such as bandlimitedness [10], thesam-
pling process is guaranteed to be one to one; i.e., there should
be a priori a continuous model. In spite of the technological
movement toward digital signal processing, by the advancesin
wavelet theory [2,9,11], a revival of continuous-time modeling
for the digital data has been triggered. Multiresolution analy-
sis [8,18], self-similarity [3,17], and singularity analysis [7] are
inseparable from a continuous-time interpretation. It is there-
fore crucial to have efficient mathematical tools that alloweasy
switching from the digital domain to the continuous, and this is
precisely the niche that splines, and, to some extent, wavelets,
are trying to fill.

In this field, polynomial splines, such as B-splines, are par-
ticularly popular, mainly due to their simplicity, compactsup-
port, and excellent approximation capabilities compared other
methods. Spline-based methods have spread to various applica-
tions since the development of B-splines [13,14,16].

Though B-splines generate remarkable results in many ap-
plications, they are not the optimum solutions for filteringprob-
lems such as interpolation. This paper, focuses on the problem
of designing optimal compact support splines which best ap-
proximate a given filter such as the ideal lowpass filter. In fact,

the desired filter reflects the characteristics of the continuous-
time model and can be arbitrary.

The remainder of the paper is organized as follows: The next
section briefly describes the spline interpolation method.In sec-
tion 3, a novel scheme is proposed to produce new optimized
splines for interpolation regardless of the type of filtering. The
performance of the proposed method is evaluated in section 4
by comparing the interpolation results of the proposed method
on standard test images to those of well-known interpolation
techniques. Section 5 concludes the paper.

2. PRELIMINARIES

In this paper, the following notation and definitions are used:
A discrete signal is shown by eitherx[n] , x(nT ) and is

defined,xs(t) , x(t)s(t) =
∑∞

n=−∞ x[n]δ(t− nT ) where

s(t) ,
∑∞

n=−∞ δ(t− nT ) is the comb function. Also, the

periodT , 1 is normalizes throughout the paper without any
loss of generality.

Definition 1. For a discrete-time signalx[n], Sm
x is a spline of

orderm if,

1. Sm
x would be a polynomial of the (at most) orderm, in

the interval[n, n+ 1].

2. Interpolation property,Sm
x (n) = x[n]

3. Sm
x ∈ Cm−1(−∞,∞)

wheren ∈ Z.

If the goal is to discover a piecewise polynomial signal
that is m − 1 times differentiable with continuous deriva-
tives, it is possible to calculate the integral ofcx(t) =
∑∞

n=−∞ cx[n]δ(t− n), m+ 1 times, i.e,

Sm
x (t) =

(

um+1 ∗ cx
)

(t) (1)

whereu1(t) is the unity step function and whereuk+1(t) ,
(

uk ∗ u1
)

(t). Acording to the second condition,Sm
x (t)s(t) =

xs(t), and substituting (1) in the last equation yeilds

xs(t) =
(

um+1 ∗ cx
)

(t)s(t) =
(

(um+1)s ∗ cx
)

(t) (2)

Hence, the above equation is satisfied, if the situation is defined

cx(t) ,

(

[

(um+1)s
]−1

∗ xs

)

(t), wherey−1 is the inverse of
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y, i.e, (y ∗ y−1)(t) = δ(t). Again, by substituting (1) it can be
shown that

Sm
x (t) =

(

um+1 ∗
[

(um+1)s
]−1

∗ xs

)

(t) (3)

Definition 2. For every continuous-time signaly(t) define,

Ly(t) ,
(

(ys)
−1 ∗ y

)

(t) (4)

If Sm
y is a spline of the orderm, LSm

y
would be called a car-

dinal spline of orderm. Hence,LSm
y

is independent ofy and is
only a function ofm.

This new notation generatesSm
x (t) = (Lum+1 ∗ xs) (t). If

y[n] is an invertible discrete-time signal,Sm
y can be used to

interpolate every discrete-time signalx[n]; i.e, it can be easily

shown thatSm
x (t) =

(

LSm
y
∗ xs

)

(t). Thus,Lm can be defined

as the cardinal spline of the orderm that for any continuous-
time signaly

Lm , LSm
y

(5)

Assumeβm is an FIR filter and is a casual spline of orderm

that has non-zero values only for0 ≤ t ≤ k ∈ N. It is desirable
to find βm as a basis for calculating other splines of orderm

from their samples instead ofum+1. According to (1),

βm(t) = um+1 ∗

k
∑

n=0

cβm [n]δ(t− nT ) (6)

whereCm(z) has been defined as the z-transform of the co-
efficientscβm [n], i.e, Cm(z) ,

∑k

n=0 cβm [n]z−n. Thus, it
can be shown that ifβm is an FIR, then(z − 1)m+1 divides
Cm(z−1). If one wished to minimize the length ofβm, it is
possible useC(z) , (z−1 − 1)m+1, andcβm [i] can be defined
ascβm [i] , (−1)i

(

m+1
i

)

. Moreover, if for every integern we
define(x)n+ = xnu1(x), thenβm can be rewritten as shown
below

βm(t) =
1

m!

[

m+1
∑

n=0

(−1)n
(

m+ 1

n

)

(t− n)m+

]

(7)

3. THE PROPOSED OPTIMIZED B-SPLINE

In many applications, it is desirable that the interpolation filter
be depicted as an ideal filter, and the second and third conditions
of Definition 1 may not be important.

Assume that the goal is to design an optimized spline to
interpolatex[·]. Also assume that~b ∈ R

m be a vector such that
∑m

k=1 bkz
−k has no zeros on the unit circle.

Definition 3. βm
o {x,~b} is defined as follows,

1. βm
o {x,~b} ∈ C0[0,m+ 1]

2. βm
o {x,~b}[n] =

{

bn 1 ≤ n ≤ m

0 o.w.

3. e[βm
o ] ,

∫∞

−∞
|F{Lβm

o
} − F{x}

F{xs}
|2df → min

whereF{y} is the Fourier transform ofy. Here, it has been
assumed thatβo

m is known at the integers and thus,(βo
m)s is also

known. The fact that
∑m

k=1 bkz
−k has no roots on the unit circle

implies that(βo
m)s has a stable inverse andLβo

m
does exist.

Now, calculus variation may be used in order to evaluate the
optimumβo

m which minimizes the errore[βm
o ]. Considering

γ ∈ C1[0,m+1] as a function which is zero at the integers, i.e,
γ (0) = γ (1) = ... = γ (m+ 1) = 0. Variational derivation of
e with respect toβm

o with γ as a test function is equal to

〈δe[βm
o ], γ〉 = lim

ε→0

e(βm
o + εγ)− e(βm

o )

ε

= 2

∞
∫

−∞

γ(−t)ℜ

{

F−1

{

[

F{xs}

F{(βm
o )s}

]∗

[

F{Lβm
o
}F{xs} − F{x}

]

}}

dt (8)

Note that according to (4),F{Lβm
o
} =

F{βm

o
}

F{(βm
o
)s}

. In order to

minimize e[βm
o ], 〈δe[βm

o ], γ〉 should be zero for allγ, which
implies that the second term inside the integral should be zero
for t ∈ (0,m+ 1); hence,

(xs∗xs)∗[(β
m
o )−1

s ∗(βm
o )−1

s ]∗βm
o = [(βm

o )−1
s ∗xs]∗x

∣

∣

∣

t∈(0,m+1)

(9)
wherey(t) , y(−t). Thus, it is proven that the optimized B-
spline which could give the best estimation ofx, should satisfy
(9). By defininga(t) , (xs∗xs)∗[(β

m
o )−1

s ∗(βm
o )−1

s ] andc(t) ,
[(βm

o )−1
s ∗ xs], (9) can be written asa ∗ βm

o = c|t∈(0,m+1).
In order to deriveβm

o from (9), for n ∈ Z, two sequences of
functions defined asBn(t) , β(t+ n)[u1(t)− u1(1− t)] and
Cn(t) , c(t+ n)[u1(t)− u1(1− t)]. Now, (9) can be written
in a matrix form as follows





B0

B1

...
Bm



 =







a[0] a[−1] ... a[−m]
a[1] a[0] ... a[−m+1]

...
...

...
...

a[m] a[m−1] ... a[0]







−1




C0

C1

...
Cm



 (10)

According to (10),{Bn}
∞
n=1 is derived and thus the optimized

B-spline is evaluated asβm
o (t) =

∑m
n=0 Bn(t− n).

Now in order to designβm
o such that the frequency response

of Lβm
o

would be the best estimation for the filter that has the
interpolation property, andh is the impulse response,

h[n] =

{

1 n = 0

0 o.w.
⇒ hs(t) = δ(t) (11)

If a desired impulse responseh is substituted forx in (9), then
for the optimizedβm

o {h,~b}, the following expression is mini-
mized:

e[βm
o {h,~b}] =

∫ ∞

−∞

|F{Lβm
o
} − F{h}|2df (12)
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Fig. 1. The optimized spline versus B-spline, of order
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Fig. 2. The comparison of the proposed method and the cubic
spline for ideal lowpass filter.

Thus,βm
o is the most proper basis for estimating the interpo-

lation by the ideal filterh. Sincehs(t) = δ(t), producing

[(βm
o )−1

s ∗ (βm
o )−1

s ] ∗ βm
o = (βm

o )−1
s ∗ h

∣

∣

∣

t∈(0,m+1)
(13)

4. SIMULATION RESULTS

The performance of the proposed method for an ideal lowpass
filter has been compared to the B-spline and the results are de-
picted in Figs. 1 and 2. Fig. 1 shows the comparision of the
optimized basis spline built for estimating an ideal lowpass fil-
ter and the cubic B-spline. Fig. 2 showsLβm

o
as compared to

L3. The optimized spline is superior to the B-spline method.
The SNR values of these methods are20.39dB and13.15dB for
the proposed method and the B-spline method, respectively,for
m = 3.

To consider practical applications, the method was tested on
several standard monochrome images. These images are down-

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Comparison of different methods for the Lena image:
(a) The original image, (b) bilinear interpolation, (c) bicubic
Interpolation. (d) WZP Cycle-Spinning [12], (e) SAI [19], and
(f) the proposed method.

sampled to provide the low solution images for interpolation. In
image applications, splines can be used for zooming and en-
largements. For comparison, three other image interpolation
methods are also simulated: 1-bicubic interpolation, 2-wavelet-
domain zero padding cycle-spinning [12] and 3-soft-decision
estimation technique for adaptive image interpolation [19]. Ta-
ble 4 shows the Peak Signal-to-Noise Ratio (PSNR) perfor-
mance of these three methods when applied to the seven well-
known test images. In all cases, the proposed optimized spline
interpolation algorithm performed best among all methods.For
high frequency content images, such as Barbara and Baboon,
the proposed algorithm outperforms other methods by1dB.

Since PSNR is an average quality measure, the spatial lo-
cations where the proposed algorithm produces significantly
smaller interpolation errors than the other competing methods
are plotted in Fig. 3. The differences are more noticeable
around the edge of the hat. The result of the present study com-



Table 1. PSNR (dB) Results of the Reconstructed Images by
Various Methods (Image Enlargement from256× 256 to 512×
512)

Images Bicubic [6] WZP–CS [12] SAI [19] Opt.Spline

Lena 30.13 30.05 30.88 32.29
Baboon 21.34 21.70 22.09 22.50
Barbara 23.32 23.88 23.71 25.10
Peppers 28.61 28.60 28.91 30.64
Couple 26.73 26.86 26.96 27.91
Bout 26.93 27.07 27.63 28.50
Girl 29.97 30.20 29.94 30.90

pare favorably both subjectively and objectively. In addition, a
wavelet scheme based on cycle-spinning interpolation has been
included to provide a comparison with a powerful method oper-
ating in the wavelet domain.

5. CONCLUSION

This paper has introduced a method for optimizing a compact
support interpolating spline for approximating a given filter in
the least square sense. In particular,it demonstrated a newly pro-
posed method for approximating the ideal lowpass filter. The
interpolation results obtained by this method are better than
those obtained by the conventional solutions, such as B-splines.
Simulation results show about1dB improvement in most of the
cases. In the future, we plan to focus on the application of these
optimized splines for non-uniform sampling for 1-D and 2-D
signals.
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