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Performance Limits of Optical Clock Recovery
Systems Based on Two-Photon Absorption
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Abstract—In this paper, we analyze and discuss the perfor-
mance limits of optical clock recovery systems using a phase-locked
loop (PLL) structure with nonlinear two-photon absorption (TPA)
phase detection scheme. The motivation in analyzing the afore-
mentioned optical PLL with TPA receiver structure is due to a
recent successful experiment reported in [8]. We characterize the
mathematical structure of PLLs with TPA, so as to evaluate the
performance limits on optical clock recovery mechanism. More
specifically, we identify two intrinsic sources of phase noise in the
system namely, the ON–OFF nature of the incoming data pulses
and the detector’s shot noise that ultimately limit the performance
of the aforementioned optical clock recovery system. In our char-
acterization of the clock recovery system, we obtain the power
spectral densities (PSDs) of the signals involved in the PLL and
use the PSDs to obtain a mathematical expression for the variance
of the timing jitter inherently associated with the recovered clock.
We examine the variance of the introduced timing jitter as a func-
tion of different system parameters such as power, bit rate, and
pulsewidth of the data and clock signals. An interesting result is
that the duty cycle factor near 4 in return to zero optical pulses is
optimal in the sense that it minimizes the variance of the system
phase noise.

Index Terms—Optical clock recovery, optical phase-locked loops
(OPLLs), performance limits, shot noise process, timing jitter in
optical systems, two-photon absorption (TPA).

I. INTRODUCTION

ACRITICAL section of almost all communication receivers
is the process of clock recovery in order to synchronize

the transmitter and receivers pairs. Recently, performing the
process of clock recovery in optical domain has received much
attention in order to overcome the speed limitations imposed
by the electronic counterparts. The ultimate success in estab-
lishing optical networking for future communication need is
to introduce all-optical signal processing using advanced and
enabling technologies such as nonlinear devices in optical net-
works. Among optical nonlinear phenomena, the process of
two-photon absorption (TPA) is a strong candidate for optical
signal processing applications, as it is simple, inexpensive, and
ultrafast. This technique is used for a variety of applications
in optical communications including autocorrelation evaluation
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of narrow pulses [1], detection of the spectrally encoded op-
tical code division multiple access (OCDMA) [2]– [5], optical
sampling [6]–[8], and demultiplexing [9]. In particular, because
of its quadratic nonlinearity, the process of TPA can be used
to measure the correlation between two high-speed optical sig-
nals. Based on this feature, an optical clock recovery scheme for
optical time-division multiplexed (OTDM) networks has been
recently proposed that incorporates the process of TPA as the
phase detection mechanism in a phase-locked loop (PLL) struc-
ture [8]. This system is shown to be polarization insensitive,
broadband, low jitter, and scalable to high data rates. The op-
erational principles of this PLL have been discussed in [8];
however, the values for the timing jitter associated with the
recovered clock are reported based on experimental measure-
ments. The aim of this paper is to characterize the mathematical
structure of this PLL such that it will result in obtaining the vari-
ance of the timing jitter due to two intrinsic sources of phase
noise in the system namely the ON–OFF nature of the incoming
data and the detector’s shot noise. This, in fact, determines the
performance limits expected from such optical clock recovery
scheme.

The rest of this paper is organized as follows. In Section II, we
introduce the clock recovery system under consideration in this
paper. Section III discusses the statistical model of the output
signal from TPA. In particular, we discuss the statistical behavior
of the cross-correlation function between the data and clock
signals. In Section IV, we focus on the PLL error signal and
obtain an analytical expression for the variance of timing jitter
in the system. In Section V, we present and discuss numerical
results, and in Section VI, we conclude the paper.

II. SYSTEM DESCRIPTION

Fig. 1(a) shows a simplified diagram of the proposed PLL
system. As depicted, high-speed optical data and clock signals
are combined and focused onto the surface of a silicon avalanche
photodiode. At wavelengths ranging from 1100 to 2200 nm, the
effect of single photon absorption is negligible for silicon photo-
diode, because at these wavelengths, the energy of one incident
photon is less than the bandgap energy of silicon [10], [11].
Nevertheless, simultaneous absorption of two incident photons
provides enough energy for generating an electron-hole pair [1].
As a result, if the wavelengths of the impinging fields lie near
1550 nm, as is the case with this system, the dominant process
in producing the output photocurrent will be due to TPA. By
choosing the polarization state of the clock to be circular, it can
be shown that the output photocurrent i(t) obtained in this way

1077-260X/$25.00 © 2008 IEEE
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Fig. 1. (a) Optical clock recovery system representation. (b) TPA’s photo-
curent as a function of the time delay between the clock and data signals θ. (c)
PLL error signal.

is proportional to [8]

i(t) ∝ (2
〈
p2

c (t − θ)
〉

t
+ α

〈
p2

d(t)
〉

t
+ 8 〈pd(t)pc(t − θ)〉t)

(1)
where pc(t) and pd(t) are power envelopes of the optical clock
and data signals, respectively, and θ denotes the relative time
delay between these two signals. The term α is a polarization-
dependant factor whose value ranges from 2 to 3 depending on
the degree of ellipticity of the data signal polarization state. In
this equation, 〈·〉t indicates the time average imposed by the de-
tector’s electron response. The first two terms in (1) are the time
average of the data and clock signals and represent a constant
background signal level. However, the third term is the cross-
correlation between these two signals and directly depends on
their relative time delay θ, as shown in Fig. 1(b). After sub-
tracting a dc offset, denoted by IOS , the resulting bipolar signal
is used as the error signal of the PLL. The feedback mecha-
nism is designed in such a way that forces the error signal to
zero, which then locks the clock and data signals together with
a timing difference θ0 , determined by the position of the zero
crossing point, as illustrated in Fig. 1(c).

There are several sources of phase noise that contribute to the
timing jitter of the recovered clock in this system. The voltage-
controlled oscillator (VCO) phase noise and the timing jitter
of the incoming data pulses are just two examples. However,
we do not consider them in this paper, as their behavior is
identical in all PLLs and have been extensively examined in the
literature [12]–[14]. In this paper, in particular, we consider the
effect of two other sources of timing jitter that are intrinsic to
such optical clock recovery systems and cannot be reduced by
using lower noise electronic devices. The first source of noise
considered is due to the fact that it is a random sequence of
ON or OFF pulses that interacts with the clock signal in order to

produce the error signal, leading to some random fluctuations in
the resulting error signal. The second source of noise is the shot
noise of the detector. Generally, the shot noise at the output of a
photodiode is small when compared to the mean of the output
photocurrent. However, in this optical clock recovery system,
we subtract the constant offset IOS from the detector’s output
photocurrent, hence, forcing it to fluctuate around zero. By doing
so, we reduce the SNR at the output of the photodetector and
bring out the effect of the shot noise in the system.

III. STATISTICAL MODELING

In our statistical modeling of the aforementioned sources of
noise, we begin by noting that the output photocurrent from the
detector, i.e., i(t), is a filtered shot noise process [15]. And the
intermediate nonfiltered shot noise process, denoted by a(t), is
generated by the input count rate process n(t), expressed as

η(t) = η
(
2p2

c (t − θ) + αp2
d(t) + 8pd(t)pc(t − θ)

)
(2)

where η is an efficiency factor proportional to the TPA coef-
ficient of the detector. The actual detector’s photocurrent, i.e.,
i(t), is produced by passing a(t) through a filter whose impulse
response is the electron response of the detector, denoted as
he(t). The Fourier transform of he(t), He(f), has the attribute
that He(0) = q, where q represents the elementary charge.

It can be easily shown that instead of subtracting the dc offset
IOS from the detector’s actual photocurrent, we can subtract
a dc amount of AOS = IOS/He(0) = IOS/q from a(t) prior to
passing it through he(t). In this way, we can combine he(t) with
the PLL filter and deal with a(t) as the output of the photodiode,
and hence, responsible for producing the PLL’s error signal. The
mean and power spectra of a(t) are closely related to those of
n(t) as [15], [16]

a(t) = ḡ n(t) (3)

Sa,a(f) = g2 n(t) + ḡ2Sn,n (f) (4)

where the bar sign indicates statistical average and Sa,a(f) and
Sn,n (f) represent the power spectral densities (PSDs) of a(t)
and n(t), respectively. The terms ḡ and g2 represent the first and
the second moment of the detector’s avalanche gain.

To obtain the statistical properties of n(t), which is a prereq-
uisite in obtaining the statistical properties of a(t), we assume
that the data and the clock signals are of the form

pd(t) =
+∞∑

m=−∞
bm p̃d(t − mTd) (5)

pc(t) =
+∞∑

m=−∞
p̃c(t − mTc) (6)

where bm ∈ {0, 1} are data binary digits for ON–OFF keying
modulation. The term θ is the time delay by which the clock
signal follows the data signal. The terms Td and Tc are the time
durations of the data and clock pulses, respectively. In an OTDM
network, assuming that there are N users in the network, we have
Tc = NTd . In (5) and (6), p̃d(t) and p̃c(t) denote zero-centered
pulses of data and clock signals, respectively, and are assumed
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to be Gaussian as

p̃d(t) = 2Pd

√
1
π

Td

w
exp

(
− t2

w2

) ∏
Td

(t)

= ad exp
(
− t2

w2

) ∏
Td

(t) (7)

p̃c(t) = Pc

√
1
π

Tc

w
exp

(
− t2

w2

) ∏
Tc

(t)

= ac exp
(
− t2

w2

)∏
Tc

(t) (8)

where Pd and Pc represent the average power of data and clock
signals, w denotes the pulsewidth parameter, which, for simplic-
ity, is assumed to be the same for both signals, and

∏
T (t) de-

notes a zero-centered rectangular pulse with unit height and du-
ration T, T ∈ {Td, Tc}. Parameters ad = 2Pd

√
(1/π)(Td/w)

and ac = Pc

√
(1/π)(Tc/w) are simplified notations in repre-

senting the Gaussian pulse amplitudes. The factor 2 in p̃d(t) is
due to the fact that the data signal is assumed to be comprised
of equally likely ones and zeros. Using (5)–(8) in (2), we obtain

n(t) = η

(
2x(t − θ) + αy(t) + 8

(
z1

(
t − θ

2

)

+ z2

(
t − Td + θ

2

)))
(9)

where x(t), y(t), z1(t), and z2(t) are four auxiliary signals that
are temporally aligned with pd(t), and are defined as

x(t) =
+∞∑

m=−∞
x̃(t − mTc) (10)

y(t) =
+∞∑

m=−∞
bm ỹ(t − mTd) (11)

z1(t) =
+∞∑

m=−∞
bmN z̃1(t − mTc) (12)

z2(t) =
+∞∑

m=−∞
bmN +1 z̃2(t − mTc) (13)

where x̃(t), ỹ(t), z̃1(t), and z̃2(t) are single zero-centered pulses
given by

x̃(t) = a2
c exp

(
−2t2

w2

)∏
Tc

(t) (14)

ỹ(t) = a2
d exp

(
−2t2

w2

) ∏
Td

(t) (15)

z̃1(t) = adac exp
(
−θ2

2w2

)
exp

(
−2t2

w2

)∏
Tc

(t) (16)

z̃2(t) = adac exp
(
−(Td − θ)2

2w2

)
exp

(
−2t2

w2

)∏
Tc

(t).

(17)

Fig. 2. Representation of pd (t)pc (t − θ) by the means of two auxiliary signals
z1 (t − θ/2) and z2 (t − (Td + θ)/2). Each clock pulse is assumed to have an
overlap with at most two pulses of the data signal at each time.

In writing pd(t)pc(t − θ) as the sum of two signals z1 (t − θ/2)
and z2 (t − (Td + θ)/2), we have multiplied the mth pulse of the
clock signal, i.e., p̃c(t − mTc − θ), by two consecutive pulses,
i.e., p̃d(t − mNTd) and p̃d(t − (mN + 1)Td), of the data signal
for all integer values of m, as depicted in Fig. 2. In doing so, we
have assumed that each clock pulse has an overlap with at most
two pulses of the data signal at each time, which is a reasonable
assumption when the pulsewidths of data and clock signals are
not significantly different.

As the first step in considering the statistical properties of
n(t), we obtain the statistical mean of n(t), conditioned on a
fixed time difference of θ (0 ≤ θ ≤ Td) between the data and
the clock signals. All the auxiliary signals presented in (9) are
cyclostationary processes. As a result, by assigning a common
random phase with a uniform distribution between 0 and Tc to
the signals pd(t) and pc(t) (which does not affect their relative
time delay), we can find time-independent means of the afore-
mentioned auxiliary signals in terms of their time average over
one whole period. This random phase can be simply interpreted
as the randomness existing in the time when the system is turned
on and the signals are generated. Using the time-independent
means of the aforementioned auxiliary signals, we can ex-
press the time-independent mean value of (3), denoted by ā,
as

a(t) = a = ḡn(t)

= ḡη

(
2P 2

c

1√
2π

Tc

w
+ αP 2

d

√
2
π

Td

w

+ 8PdPc
1√
2π

Td

w

(
exp

(
−θ2

2w2

)

+ exp
(
−(Td − θ)2

2w2

)))
. (18)
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IV. PLL ERROR SIGNAL

In this section, we analyze and discuss the PLL error signal. It
can be seen that the θ-dependant mean of a(t) in (18) resembles
the shape of the detector’s photocurrent as a function of θ for
0 ≤ θ ≤ Td , presented in Fig. 1(b). As previously mentioned,
we reduce the value of a(t) by the dc term AOS to produce the
PLL bipolar error signal in our model. However, this error signal,
i.e., a(t) − AOS , is degraded due to random fluctuations of a(t)
around its mean ā. In fact, if we write a(t) as the summation
of its mean ā and a zero-mean signal na(t), then na(t) plays
the role of an additive noise term to the PLL’s error signal.
Assuming that the value of ā − AOS is a linear function of θ in
the vicinity of zero crossing point θ0 [14], we can express the
PLL error signal as

a(t) − Aos = (ā − Aos) + na(t) = Ks(θ − θ0) + na(t)

= Ks

(
θ +

na(t)
Ks

− θ0

)
= Ks(θ + n′

a(t) − θ0)

(19)

where Ks is the slope of ā at θ = θ0 and n′
a(t) = na(t)/Ks is

an equivalent noise term. The value of Ks can be obtained by
evaluating the derivative of the third term in (18) with respect
to θ at θ = θ0 ; hence,

Ks = ḡη

(
8PdPc

1√
2π

Td

w

(
− θ0

w2 exp
(
− θ2

0

2w2

)

+
(Td − θ0)

w2 exp
(
− (Td − θ0)2

2w2

)))
. (20)

If we denote the phase of the data and the clock signals by
θd and θc , respectively, we can use the notation of θd − θc to
represent the time delay between these two signals instead of
θ. By substituting this notation in (19), we can indicate the
so-called noisy error signal of the PLL as

a(t) − Aos = Ks(θ + n′
a(t) − θ0)

= Ks(θd + n′
a(t) − (θc + θ0)). (21)

Equation (21) is a basic equation as it helps to demonstrate the
PLL in the phase domain. In the phase domain representation
of the PLL, the phases of data and clock signals lie at the input
and output terminals, respectively, and n′

a(t) represents a noise
term that is added to the input signal of the PLL. An illustration
of the phase-domain representation of the PLL is presented in
Fig. 3.

From Fig. 3, the closed-loop frequency response of the PLL
at the phase domain, denoted by G(f), can be expressed as

G(f) =
KsHs(f)HPLL(f)HVCO(f)

1 + KsHs(f)HPLL(f)HVCO(f)
. (22)

Based on the phase-domain representation of the PLL, we can
obtain the variance of the PLL’s output timing jitter in terms of
the PSD of n′

a(t) and the PLL’s closed-loop frequency response

Fig. 3 PLL’s phase-domain model.

G(f) as

σ2
p =

∫ +∞

−∞
Sn ′

a ,n ′
a
(f) |G(f)|2 df

=
∫ +∞

−∞

Sna ,na
(f)

K2
s

|G(f)|2 df

=
Sna ,na

(0)
K2

s

∫ +∞

−∞
|G(f)|2 df =

2Sna ,na
(0)Bf

K2
s

(23)

where Bf is (one sided) equivalent closed-loop bandwidth of
the PLL, defined as

Bf =
∫ ∞

0
|G(f)|2 df. (24)

The third equality in (23) arises from the fact that the closed-
loop bandwidth of the PLL is much narrower compared to the
optical broadband PSD of n′

a(t).
From (23), to obtain the value of σ2

p , we first obtain the value
of Sna ,na

(0). To do this, we evaluate the value of Sa,a(f) at
the dc frequency that differs from Sna ,na

(0) by the expression
ā2δ(f), i.e., Sna ,na

(0) = Sa,a(f) |dc freq. − ā2δ(f). Equation
(4) indicates that Sa,a(f) |dc freq. is comprised of two terms.
The first term, denoted by Sshot , is due to the shot noise and
equals to

Sshot = g2 n̄ = FA ḡ2 n̄ (25)

where FA is the excess noise factor of the avalanche photodiode
and the value of n̄ is implicitly given by (18). The second term of
Sa,a(f) |dc freq. is proportional to the PSD of n(t) at the dc fre-
quency. Using the representation given in (9), we can obtain the
autocorrelation function of n(t), and then, evaluate its Fourier
transform Sn,n (f) at the dc frequency. In the Appendix, it is
shown that the resulting value for Sn,n (f) at the dc frequency,
after being multiplied by ḡ2 , is expressed as

ḡ2Sn,n (f) |dc freq. = ā2δ(f) + ḡ2η2

(
α2 Ỹ 2(0)

4Td

+
16

(
Z̃2

1 (0) + Z̃2
2 (0)

)
Tc

+
4αỸ (0)

(
Z̃1(0) + Z̃2(0)

)
Tc

)

(26)

where Ỹ (f), Z̃1(f), and Z̃2(f) denote the Gaussian Fourier
transforms of the Gaussian-shaped pulses ỹ(t), z̃1(t), and z̃2(t),
respectively. If we denote the second term in (26) by Sbin ,
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the value of Sbin can be obtained by substituting the Fourier
transforms presented in (26) by their value at f = 0, as

Sbin = ḡ2η2
(

2αP 4
d T 3

d

πw2 +
32P 2

d P 2
c T 2

d Tc

πw2

(
exp

(
− θ2

w2

)

+ exp
(
− (Td − θ)2

w2

))
+

16αP 3
d PcT

3
d

πw2

(
exp

(
− θ2

2w2

)

+ exp
(
− (Td − θ)2

2w2

)))
. (27)

Based on the parameters Sshot and Sbin and using (4), the value
of Sna ,na

(0) can be obtained as

Sna ,na
(0) = Sa,a(f)|dc freq. − ā2δ(f) = g2 n̄

+ ḡ2Sn,n (f) |dc freq. − ā2δ(f) = Sshot + Sbin

(28)

where in writing the last equality, we have used the definitions
of the parameters Sshot and Sbin presented earlier. Substituting
the value of Sna ,na

(0) from (28) in (23), we obtain

σ2
p =

Sna ,na
(0)Bf

K2
s

=
SshotBf

K2
s

+
SbinBf

K2
s

= σ2
shot + σ2

bin

(29)
where σ2

shot and σ2
bin correspond to terms including Sshot and

Sbin , respectively. Equation (29) indicates that the variance of
the timing jitter inherently associated with the recovered clock
is represented as the sum of two terms corresponding to the two
intrinsic sources of phase noise introduced in Section II.

Note that the value of Sna ,na
(0) (and thus σ2

p ) is a function
of θ (due to the θ-dependence of both Sshot and Sbin terms),
and consequently, it would be hard to analyze the system for
arbitrary changes of θ. However, when the PLL reaches its
steady state, the value of θ changes only over a small interval
around θ0 denoted by (θ0 − dθ, θ0 + dθ). It can be seen that,
for practical values of dθ, the value of Sna ,na

(0) changes only
slightly over this interval, and as a result, in obtaining the value
of Sna ,na

(0), we can use the value of θ0 as a representative
of the whole interval (θ0 − dθ, θ0 + dθ). In the next section,
we will use a set of practical values for the system parameters
to obtain the value of Sna ,na

(0) for different values of θ and
numerically demonstrate this feature.

V. NUMERICAL RESULTS

In this section, we numerically investigate the analytical re-
sults presented in the previous section. We begin by giving a
numerical example using the same system parameters reported
in the experiment in [8], namely, Pd = 6 mW, Pc = 12 mW
(which corresponds to average powers of 3 and 6 mW for data
and clock signals, respectively, in the passband), Td = 12.5 ps,
Tc = 100 ps, pulsewidth of data and clock signals [full-width
at half-maximum (FWHM)] = 4 ps, Bf = 5.5 kHz. For pa-
rameter α, we use the representative value of 3 that corre-
sponds to a linear polarization state for the data signal. The
value of ηḡ is estimated from the data given in [8] to be
ηḡ = 1.56 × 1015 s−1W−2 . Finally, we substitute the following

Fig. 4. Normalized value of Sn a n a (0) versus the time delay between data
and clock signals θ.

unknown variables by their typical values: ḡ = 150, FA = 5
[17], [18], and θ0 = Td/4 = 3.125 ps.

Employing these system parameters and using the value of
θ0 for θ, we obtain a theoretical value of 6.633 × 1015 s−1 for
Sna ,na

(0), resulting in a timing jitter of about σp = 20 fs. To
examine the behavior of Sna ,na

(0) in the vicinity of θ0 , we
normalized this parameter by its value at θ = θ0 and plot its
normalized values as a function of θ in the neighborhood of θ0 ,
as depicted in Fig. 4. As illustrated, Sna ,na

(0) deviates only by
1% of its value at θ = θ0 for deviations of θ as large as 170 fs.
This exceeds the practical values of the timing jitter associated
with the recovered clock even at the presence of all experimental
sources of timing jitter in the system. This, in fact, confirms the
assumption that we can use the value of Sna ,na

(0), obtained for
θ = θ0 , in evaluating the value of σp in the system.

The value of 20 fs calculated here for σp , in comparison
with the 110 fs timing jitter experimentally reported in [8],
indicates that the timing jitter of the recovered clock in this
system is mostly dominated by the electrical sources of the
phase noise such as the noise due to VCO and the RF synthesizer
at the receiver and transmitter sides, respectively. On the other
hand, it indicates that by using lower noise system structures,
the variance of the timing jitter associated with the recovered
clock can be further improved and get close to the fundamental
intrinsic limit, as obtained in this paper (see, e.g., [19]).

In Figs. 5–7, we investigate how the different system parame-
ters such as power of the optical data and clock signals, number
of users in the OTDM network and the data bit rate affect the
value of σp . In plotting these figures, we use the aforementioned
values as the default value of system parameters, and in each
case, we vary the value of those parameters whose effect is under
consideration. In the cases that we change the value of the data
signal power to explore its effect, we simultaneously change the
value of the clock signal power so that the ratio between these
two quantities remains at 2. This is because a ratio of 2 between
the power of the data and clock signals assures proper operation
of the system for different polarization states of the input data
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Fig. 5. Standard deviation of the inherent jitter in the system σp versus number
of users in the OTDM network N and the data signal power Pd .

Fig. 6. Ratio between timing jitter due to two intrinsic sources of phase noise
in the system versus the data signal power Pd .

signal [8]. Moreover, when we vary the duration of data pulses
Td to examine the effect of data bit rate, we concurrently change
the duration of the clock pulses Tc and also the pulsewidth of
both signals, so that the ratio between these parameters remains
constant. This, indeed, helps us to deal with realistic parameters
for data and clock signals.

Fig. 5 plots the value of σp as a function of the data signal
power Pd and the number of users in the OTDM network N,
using solid and dashed curves, respectively. As illustrated in the
bottom axis, higher values for the signal powers lead to lower
values for the variance of the intrinsic timing jitter in the system.

As previously mentioned, in an OTDM network, for a con-
stant value of the data signal period Td , the clock signal period
Tc is determined by the number of users in the network N.
In plotting the dashed curve in Fig. 5, we fix the parameter

Fig. 7. Value of σp normalized by the data bit duration Td versus data bit rate.

Td and display the parameter σp as a function of the num-
ber of users in the network. The diagram for the values of
N = 2, 4, 8, 16, and 32 is marked by small circles. As de-
picted, the value of σp rises as the number of users increase in
the network, which, in fact, is as a result of the corresponding
increase in the value of Tc in the system.

To explore how the two introduced sources of phase noise
contribute to the overall timing jitter of the system, we find it
useful to plot the value of σshot/σbin as a function of Pd , as
depicted in Fig. 6. As illustrated, for lower values of Pd , it is
the shot noise source that dominates the value of the inherent
timing jitter in the system. However, at higher values of the
signal powers, the contribution of σbin increases in the system
and as a result, the value of σp is determined by the influence of
both σshot and σbin .

In Fig. 7, we examine the inherent timing jitter associated
with the recovered clock for different values of the data bit rate.
Since the duration of the data pulses Td varies for different
values of data bit rate, we plot the normalized value of σp , i.e.,
σp/Td , as a function of the data bit rate. As illustrated in Fig. 7,
the quantity σp/Td demonstrates a sharp fall at lower values
of data bit rate. However, it is relatively stabilized for data bit
rates more than 100 Gb/s. It means that at lower values of bit
duration, the value of timing jitter decreases so that the ratio
σp/Td remains approximately constant.

Finally, we study the dependence of σp on the pulsewidth
parameter w of the signals (which is assumed to be the same
for both data and clock pulses). To better investigate this de-
pendence, we examine the value of σp as a function of the duty
cycle factor fp , defined as

fp =
Td

TFWHM
(30)

where TFWHM denotes FWHM of the data and clock pulses,
and is closely related to the pulsewidth parameter w by the
relation TFWHM = 2

√
ln(2)w. In plotting Fig. 8, we display

the value of σp as a function of fp while keeping the parameter
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Fig. 8. Standard deviation of the inherent timing jitter in the system σp versus
duty cycle factor of the data and clock pulses fp .

Fig. 9. Optimum duty cycle factor fp ,opt as a function of the data signal
power Pd and the data bit rate.

Td at a constant value. As illustrated in this figure, there is an
optimum value for fp , denoted by fp,opt , for which the value of
σp is minimized. The value of fp,opt for the system parameters
described above turns out to be 3.87.

The existence of an optimum value for fp can be explained
by considering how (18) and (27) depend on w [(18) and (27)
correspond to the shot noise source and binary data source,
respectively]. For example, from (18), it follows that the cross-
correlation between data and clock signals has a Gaussian pulse
shape whose pulsewidth is proportional to w, while its amplitude
inversely depends on w that leads to an interaction between two
differently behaving (one decreasing and the other increasing)
functions of w. Similar interactions occurs in (27) and their net
effect determines the value of fp,opt .

It can be seen that the value of fp,opt does not change con-
siderably for a large range of system parameters. To illustrate

this feature, we plot the value of fp,opt as a function of the data
bit rate and the data signal power in Fig. 9. As depicted, for a
large variety of system parameters, the value of fp,opt ranges
only from 3.86 to 4. This leads us to the result that a duty cycle
factor of about 4 can be regarded as optimal in this optical clock
recovery system.

VI. CONCLUSION

In this paper, we analyzed, mathematically, a newly proposed
optical clock recovery system based on TPA detection mecha-
nism. We evaluated the effect of two intrinsic sources of timing
jitter inherently limiting the performance of this system, namely,
random nature of the incoming data pulses and the detector’s
shot noise. Based on the PSDs of the signals involved in the
system, we obtained an analytical expression for the variance of
the timing jitter intrinsically accompanying the recovered clock.
We observed that the variance of the introduced timing jitter is
inversely related to the input signal powers and the input data bit
rate. However, its value rises as the number of users increases
in an OTDM network. An interesting result was that, for a large
variety of system parameters, a duty cycle factor of about 4 was
shown to be optimal in the sense that it minimizes the variance
of the timing jitter in the recovered clock.

APPENDIX

In the Appendix, we express the autocorrelation function of
n(t), denoted by Rn,n (τ), in order to obtain its Fourier transform
at the dc frequency, i.e., Sn,n (0). The value of n(t) from (9) is
given by

n(t) = η

(
2x(t − θ) + αy(t) + 8

(
z1

(
t − θ

2

)

+ z2

(
t − Td + θ

2

)))
. (A1)

In obtaining the value of Rn,n (τ), as we described when present-
ing (18) of the paper, we assume a common random phase with
uniform distribution over (0, Tc ) for all terms in (A1) which, as
previously discussed, does not affect the validity of the results.
At this step, we neglect the oscillations of θ in (A1) and obtain
the autocorrelation function of n(t) conditioned on a fixed θ.
The value of Rn,n (τ) can be expressed in terms of the auto- and
cross-correlation functions of its components presented in (A1)
as

Rn,n (τ) = 4Rx,x(τ) + α2Ry,y (τ) + 64Rz1 ,z1 (τ)

+ 64Rz2 ,z2 (τ) + 2α (Rx,y (τ − θ) + Ry,x(τ + θ))

+ 16
(

Rx,z1

(
τ − θ

2

)
+ Rz1 ,x

(
τ +

θ

2

))

+ 16
(

Rx,z2

(
τ +

Td − θ

2

)

+Rz2 ,x

(
τ − Td − θ

2

))
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+ 8α

(
Ry,z1

(
τ +

θ

2

)
+ Rz1 ,y

(
τ − θ

2

))

+ 8α

(
Ry,z2

(
τ +

Td + θ

2

)

+Rz2 ,y

(
τ − Td + θ

2

))

+ 64
(

Rz1 ,z2

(
τ +

Td

2

)
+ Rz2 ,z1

(
τ − Td

2

))
.

(A2)

All of the auto- and cross-correlations presented in (A2) can be
obtained using elementary stochastic processes theory and we
list only the results

Rx,x(τ) =
1
Tc

x̃(τ) � x̃(τ) (A3)

where the � sign shows the circular convolution operation be-
tween two pulses. The circular convolution operation between
two arbitrary pulses w̃1(t) and w̃2(t) with durations T1 and
T2 , respectively, is defined in terms of the ordinary convolution
operation between the first pulse and the periodically repeated
version of the second pulse, as

w̃1(t) � w̃2(t) = w̃1(t) ∗
(

+∞∑
m=−∞

w̃2(t − mT2)

)
(A4)

where ∗ denotes the ordinary convolution operation. Note that
by this definition, the circular convolution operation is not a
commutative operation when T1 and T2 are not identical.

For other correlation functions, we have

Ry,y (τ) =
1

4Td
ỹ(τ) � ỹ(τ) +

1
4Td

ỹ(τ) ∗ ỹ(τ) (A5)

Rz1 ,z1 (τ) =
1

4Tc
z̃1(τ) � z̃1(τ) +

1
4Tc

z̃1(τ) ∗ z̃1(τ) (A6)

Rz2 ,z2 (τ) =
1

4Tc
z̃2(τ) � z̃2(τ) +

1
4Tc

z̃2(τ) ∗ z̃2(τ) (A7)

Rx,y (τ) = Ry,x(τ) =
1

2Td
x̃(τ) � ỹ(τ) (A8)

Rx,z1 (τ) = Rz1 ,x(τ) =
1

2Tc
x̃(τ) � z̃1(τ) (A9)

Rx,z2 (τ) = Rz2 ,x(τ) =
1

2Tc
x̃(τ) � z̃2(τ) (A10)

Ry,z1 (τ) = Rz1 ,y (τ) =
1

4Tc
z̃1(τ) � ỹ(τ) +

1
4Tc

z̃1(τ) ∗ ỹ(τ).

(A11)

The cross-correlation function between signals z2(t) and y(t)
can be obtained using a shifted version of y(t) defined as y′(t) =
y(t + Td). For y′(t) defined in this way, it can be easily seen
that the pulses of z2(t) are temporarily aligned with those pulses
of y′(t) that have contributed in constructing them. It can be
shown that the cross-correlation function between signals z2(t)

and y(t) reads

Ry ′,z2 (τ) = Rz2 ,y ′(τ) =
1

4Tc
z̃2(τ) � ỹ(τ) +

1
4Tc

z̃2(τ) ∗ ỹ(τ).

(A12)
Since y′(t) is a shifted version of y(t), the values of Ry,z2 (τ) and
Rz2 ,y (τ) can be directly obtain from Ry ′,z2 (τ) and Rz2 ,y ′(τ) as

Ry,z2 (τ) = Ry ′,z2 (τ − Td) (A13)

Rz2 ,y (τ) = Rz2 , y ′(τ + Td). (A14)

And finally, we have

Rz1 ,z2 (τ) = Rz2 , z1 (τ) =
1

4Tc
z̃1(τ) � z̃2(τ). (A15)

Using (A3) and (A5)–(A15) in (A2) gives us the value of
Rn,n (τ). The Fourier transform of Rn,n (τ), i.e., Sn,n (f), can
be obtained using elementary properties of the Fourier trans-
form. The resulting value of Sn,n (f) at the dc frequency would
be

Sn,n (f) |dc freq. = n̄2δ(f)

+ η2

(
α2 Ỹ 2(0)

4Td
+

16
(
Z̃2

1 (0) + Z̃2
2 (0)

)
Tc

+
4αỸ (0)

(
Z̃1(0) + Z̃2(0)

)
Tc

)
. (A16)

Multiplying both sides of (A16) by ḡ2 , leads us to the (26) of
the paper.
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