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Abstract: The authors indicate the dependence between the inputs of the relay channel with one auxiliary
random variable as Cover, El-Gamal and Salehi have done for the multiple access channel with arbitrarily
correlated sources. Then, by considering broadcast and multiple access sub-channels in the relay channel, the
authors describe the essential role of the relay with special Markovity conditions on the auxiliary random
variable and channel input–outputs, and unify most of known capacity theorems into one capacity theorem.
The capacity theorem potentially may be applicable to a more general class of relay channels including at
least the relay channels with known capacity.
1 Introduction

1.1 The relay channel

The discrete and memoryless relay channel (Fig. 1) consists
of four finite sets X1, X2, Y, Y1 and a collection of
probability distributions p( � , � jx1x2) on Y � Y1, one for
every (x1, x2) [ X 1 �X 2; y and y1 are the channel outputs
and are received by the receiver and the relay, respectively;
x1 and x2 are the channel inputs and are sent by the
transmitter and the relay.

An (2nR, n) code for the relay channel consists of a set of
integers M¼ {1, 2, . . . , 2nR}, an encoding function that
maps each message w [M into a code word
x1, x1:M! xn

1, a set of relay functions { fi }
n
i¼1 such that

x2i ¼ fi {y11, y12, . . . , y1i�1}, 1 � i � n and a decoding
function g : yn

!M. A rate R is achievable if there exists a
sequence of (2nR; n) codes with P (n)

e ¼ P{ŵ = w}! 0 as
n! 1. Channel capacity C is defined as the supremum
over the set of achievable rates.

1.2 Background

The relay channel was first introduced by Van der Meulen
[1]. In [2] the capacity of degraded and reversely degraded
relay channels and the capacity of the relay channel with
feedback as well as upper and lower bounds on the capacity
of the general relay channel were established. In [3] the
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capacity of semi-deterministic relay channel, in [4, 5] the
capacity of relay channel with orthogonal components, in
[6] the capacity of modulo-sum relay channel (MSRC) and
in [7] the capacity of a class of deterministic relay channels
have been determined. The capacity of the general relay
channel is still unknown; therefore the challenge on the
relay channel is to work about the problem of the capacity.

In most known capacity theorems ([2, degraded and full
feedback relay channels], [3, semi-deterministic relay
channel], [4, orthogonal relay channel]) the rate is achieved
using decode-and-forward (DAF) strategy [2, 8] and the
cut-set bound achieving converse is proved under the
restrictions imposed to the definition of the special
channel. All of these capacities cannot be achieved via
estimate-and-forward (EAF) strategy [2, 8] and among
those, we have only the reversely degraded relay channel,
the capacity of which can be achieved by both DAF and
EAF strategies (Section 6).

1.3 The relay channel and the multiple
access channel

In multiple access channel with correlated sources, the
channel inputs are dependent and in [9] this dependence
has been indicated by three auxiliary random variables and
to allow partial co-operation between the transmitters, the
codes are allowed to depend statistically on the source
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outputs. In the relay channel, there is only one source and the
channel inputs are dependent; we can indicate this
dependence with one auxiliary random variable and allow
the codes to depend on the source outputs as in [9].

1.4 Our work

Here, we define almost general relay channel with decode-
and-forward (AGRCDAF) strategy and determine its
capacity. Then we show that all of the relay channels with
known capacity are special cases of it. We have unified the
previous capacity theorems into one theorem towards
clarifying, helping and co-operating role of the relay in the
relay channel and in all of these theorems. Our theorem is
applicable at least to those relay channels that satisfy the
constraints of the theorem. DAF strategy is one of many
possible coding schemes and the best scheme till date. Of
course, we do not claim that it is optimal for any relay
channel.

Also, we show that our capacity theorem is consistent with
the capacity regions for broadcast channel with degraded
message sets and the multiple access channel with partially
co-operating encoders (in a special case).

1.5 Paper organisation

The paper is organised as follows. In Section 2, we categorise
the relay channels into two groups. In Section 3, the role
of the relay is described mathematically and in Section 4,
we define AGRCDAF, that includes interpretation,
the definition and explanation of the properties of
AGRCDAF. In Section 5, the capacity of the AGRCDAF
is determined and proved. In Section 6, we show that the
known capacity theorems are special cases of our capacity
theorem and also validate our capacity theorem by its
consistency with previous results regarding special broadcast
channel and multiple channel with co-operating encoders
(in a special case). Finally, the conclusion in Section 7.

2 Two important groups of the
relay channels
The inputs X1X2 in Fig. 1 can be dependent or independent.
One auxiliary random variable U, which is related to X1X2

by a distribution function p(x1x2u), can indicate the
dependence of the inputs. In this case the relay can decode
U of X1 through X2Y1 (U = 1). When the inputs are
independent, the relay estimates Ŷ1 of Y1(U ¼1) [2].

To date, two important coding strategies or the
combination of them have been applied to the relay channels
to obtain the best rates in different situations [2, 8].
Therefore we can categorise the relay channels into two
groups: the relay channels with DAF strategy (U = 1); and
the relay channels with EAF strategy (U ¼1).
Commun., 2009, Vol. 3, Iss. 7, pp. 1208–1215
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2.1 The relay channels with DAF strategy

DAF strategy is one of many possible coding schemes
(although the best scheme up to now) that gives the best
rate when the channel between the sender and the relay is a
good one. To date the best rate of DAF strategy is the rate
in [2, theorem 7, Ŷ1 ¼1, V ¼ X2, U ¼ (X2;U )] for the
relay channel in Fig. 1

R ¼ supp(x2x2u)min{I (X1X2; Y ),

I (U ; Y1jX2)þ I (X1; Y jX2U )} (a1)

where supremum is taken over all by p(x1x2u) and U is an
auxiliary random variable.

2.2 The relay channels with EAF strategy

EAF strategy gives the best rate when the channel between
the relay and the receiver has a better quality. To date
the best rate obtained by this strategy is the rate R�1 in
[2, theorem 6]

R�1 ¼ sup I (X1; Y Ŷ1jX2)

subject to the constraint

I (X2; Y ) � I (Y1; Ŷ1jX2Y )

where the supremum is taken over all joint distribution on
X1 �X2 � Y � Y1 � Ŷ1 of the form

p(x1x2 y y1 ŷ1) ¼ p(x1)p(x2)p(yy1jx1x2)p(ŷ1jy1x2) (a2)

and kŶ1k , 1, where k � k indicates the cardinality.

In [10] for the noisier relay-receiver channel, that is

I (Ŷ1; Y1jX2Y )� I (Ŷ1; X1jX2Y ) � I (X2; Y ) � I (Ŷ1; Y1jX2Y )

the following rate R�2 (the rate less then R�1) is achieved

R�2 ¼ sup{I (X1; Y jX2)�H (Ŷ1jX2YX1)þ I (X2; Y )

þH (Ŷ1jX2Y1)}

where supremum is taken over by (a2).

In [11] with EAF strategy, a rate has been obtained when
the channel inputs are block internally dependent instead of
the independence of the inputs in (a2).
1209
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3 Mathematical description of
the relay
3.1 Mathematical description of the
relay’s role

The main idea of Van der Meulen [1] in introducing the relay
channel and the main explanation in [2] about the relay
channel are as follows.

When Y (Fig. 1) cannot communicate with X1, the relay Y1

can co-operate with Y in making the communication possible
and or increasing the rate of data transmission, namely, Y1

along with X2, can decode some information from the
message sent to Y by X1, and then transmit it to Y by X2.
The receiver, upon receiving Y, can find X2 and then
decode the information understood and transmitted by the
relay, thereby understanding X1.

Since [1, 2], thus far, the relay channel has been described
statistically by probability distributions p(yy1jx1x2). This
description may be any observation of statistical behaviour of
the channel and can also show other channels, such as two
way and interference channels. In all of these descriptions,
the helping role of the relay and the co-operation between
the sender and the relay, in other words, the logical
foundations of the relay’s definition are not seen clearly.

In [9] the dependence between the inputs of the multiple
access channel with correlated sources has been shown using
auxiliary random variables and here, similarly, we can reveal
the relay’s role and describe the correlation between
channel inputs by one auxiliary random variable U, the
mathematical relationship of which to (X1X2YY1), for any
relay channel, can be stated as

p(x1x2uyy1) ¼ p(x1x2u)p(yy1jx1x2) (i)

where, U is related to YY1 through the co-operation between
X1X2 and X1X2 are related to U with p(x1x2u). Then, we can
axiomise the essential property of the relay and explain
mutual relations of (X1X2YY1U ), as follows.

3.2 Mathematical description of the
relay’s co-operation

For the relay we have two cases:

Case 1: The relay co-operates with the sender and is not
useless. In this case:

First, the relay (X2Y1) understands U of X1.
Mathematically X1 ! U ! X2Y1 or necessarily

X1 ! X2U ! Y1 (ii)

Second, the relay must be better than the receiver in finding U.
0
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Mathematically

U ! X2Y1 ! Y (iii)

Case 2: The relay is useless, that is, the receiver is itself better than
the relay in finding U and X1 (sufficiently UX1 ! Y ! Y1X2 or
necessarily from (6) below X1 ! X2UY ! Y1, or sufficiently
the condition (ii) and the accompanying condition

Y1 ! X1X2U ! Y (iv)

So, we can define a more general class of relay channels,
considering (ii), (iii) and (iv), as follows in Section 4.

4 Almost general relay channel
with DAF strategy
Auxiliary random variables have been used in achievability
results (interference channels [12], Z-channels [13], cognitive
radio channels [14], broadcast channels [15 and references
therein], multiple access channels [9, 16], relay channels [2]),
in capacity results (broadcast channels [15 and references
therein], relay channels [7], side information channels [17],
multiple access channels [9, 18]) and in defining channels
(less noisy broadcast channels [19], modified interference
channels [12], modified cognitive radio channels [14]). Here
we use one auxiliary random variable in the definition and the
capacity of a class of relay channels.

As mentioned in the introduction, most of known capacity
theorems ([2, degraded and full feedback relay channels], [3,
semi-deterministic relay channel], [4, orthogonal relay
channel]) have their achievability parts by DAF strategy and
have their cut-set bound achieving converses under the
restrictions imposed to the definition of the special channel.
Now, having considered this common property for known
capacity theorems and also the explanations in Section 3, we
can gather all these as Markovity conditions consistent with
logical foundations of the definition of the relay channel.

Definition: A discrete and memoryless relay channel
p(yy1jx1x2) (Fig. 1) is said to be AGRCDAF strategy if
there exists joint distribution p(x1x2u) such that

X1 ! X2U ! Y1 (1)

U ! X2Y1 ! Y (2)

Y1 ! X1X2U ! Y , U = X1 (3)

where

p(x1x2uyy1) ¼ p(x1x2u)p(yy1jx1x2) (4)

and U is one auxiliary random variable in all (1)–(3) and
represents the information decodable by the relay, of X1

through Y1 and X2.

Remark: In this definition, U ¼ constant does not represent
the decodable information and therefore it is not and need
IET Commun., 2009, Vol. 3, Iss. 7, pp. 1208–1215
doi: 10.1049/iet-com.2008.0368



IET
do

www.ietdl.org
not be permissible because: U ¼ constant, carries no
information and according to (1), it is not decodable
(X1 ! X2 ! Y1) and hence, the relay cannot and need not
decode and forward anything, whereas every AGRCDAF
must decode something U of X1.

4.1 The interpretation of the definition

1. The relay channel aims to send X1 to Y and the receiver
needs the co-operation of the relay to find X1, otherwise
the relay is useless.

2. The relay generally does not understand X1 fully (the
channel is not a degraded one in general) and only
understands U of X1, through X2Y1 and nothing.
Mathematically X1! U! X2Y1 or necessarily (1) in the
definition.

3. The relay must be better than the receiver in finding U,
otherwise the relay is useless. Mathematically U! X2Y1! Y,
(2). In other words by X2 ¼1, the broadcast sub-channel
(X1! YY1) must be a less noisy channel [19] regarding U,
(sufficiently U! Y1! Y ).

4. In useless cases of the relay, the receiver is itself better than
the relay in finding U and X1 (sufficiently UX1! Y! Y1X2

or necessarily from (6) below X1! X2UY! Y1, or
sufficiently (3) accompanying (1) in the definition).

4.2 Some properties of AGRCDAF

For Markov chains on arbitrary random variables of X, W, Z
and Y according to the relation

I (X ; Z, Y jW ) ¼ I (X ; ZjW )þ I (X ; Y jZ, W )

¼ I (X ; Y jW )þ I (X ; ZjY , W ) (5)

and the non-negativity of mutual information, it is readily
shown that

X ! W ! (Z, Y ),

X ! W ! Z

and

X ! (W , Z)! Y

8><
>:

9>=
>;

,

X ! W ! Y

and

X ! (W , Y )! Z

8><
>:

9>=
>; (6)

Figure 1 Relay channel
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Lemma 1: For the AGRCDAF, we have

p1: X1 ! X2UY ! Y1 (7)

p2: If Y1 ¼ f (X1, X2) then U can be a function of X1 and X2

p3: I (U ; Y1jX2) ¼ I (X1; Y1jX2) (8a)

I (X1; Y jX2U ) ¼ I (X1; Y jX2Y1) (8b)

Proof of Lemma 1:

p1:

(3)) Y1 ! X1X2U ! Y

(1)) Y1 ! X2U ! X1

�
)
(6)

(7)

and

Y1 ! X2U ! Y

8><
>:

9>=
>; (9)

p2: (1)) H (Y1 j X2U ) ¼ H (Y1 jX2UX1) ¼ 0) Y1 is a
function of X2 and U ) U can be a function of X1 and X2.

p3: For U ¼ X1, (8a) is obvious and both sides of (8b) are
zero from(2), but for U = X1, we have

(4)) (U ! X1X2 ! Y1) (10)

then (10) and (1) )
(6)

(8a)

and I (X1; Y jX2U ) ¼ H (Y jX2U )�H (Y jX2X1U ))
(9)

(3)
H (Y j

X2UY1)�H (Y jX2X1UY1))
(2)

(4),(6)
H (Y jX2Y1)�H (Y jX1X2Y1)¼

I (X1; Y jX2Y1).

5 The capacity of the agrcdaf
Theorem: The capacity of the AGRCDAF is given by

C ¼ supp(x1x2u) min{I (X1X2; Y ), I (U ; Y1jX2)

þ I (X1; Y jX2U )} (11)

where supremum is taken over all p(x1x2u) for which (4)
satisfies (1)–(3).

Proof of the theorem: Achievability: It can be directly proved
using random coding and random binning but here the proof
is omitted, because it can be derived from [2, theorem 7]
by the substitution of Ŷ 1 ¼1, V ¼ X2, U ¼ (X2, Q) and
renaming Q by U, as statement R in (a1) of Section 2 or it can
be seen in [4, theorem 2.4] and in [3].

Converse: From (8a) and (8b) in Lemma 1, in both cases
U ¼ X1 and U = X1, the achievability result coincides
with the max flow-min cut upper bound in [2] and the
converse proof is completed. Or we can prove the converse
using Fano’s inequality [20] and the following inequalities
1211
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the proof of which is omitted for brevity

I (w; Y ) �
Xn

i¼1

I (X1iX2i; Yi) and I (w; Y )

�
Xn

i¼1

I (Ui ; Y1ijX2i)þ I (X1i; YijX2iUi)

where w is the message to be sent from the sender to the
receiver and Y is the received sequence at the receiver in
Fig. 1.

6 The results of the theorem
6.1 Relay channel (U = 1)

Till now, for the relay channel, the capacity achievable by
DAF strategy has been found in the following special cases:

1. Degraded relay channel (and Gaussian degraded relay
channel) in [2].

2. Reversely degraded relay channel in [2].

3. The relay channel with full feedback in [2] and with
partial feedback (receiver-relay feedback) in [21].

4. Semi-deterministic relay channel in [3].

5. The relay channel with orthogonal components in [4, 5].

Now, we prove that the capacity of all of the above special
relay channels is derived from our capacity theorem. In other
words, we show that our general model defined as
AGRCDAF includes all of the above special models as its
sub-sets.

1. If U ¼ X1 (or U ¼ g(X1) and g is reversible), then there
exists p(x1x2u) ¼ p(x1x2) such that for degraded relay channel
from (4) we have p(x1x2yy1) ¼ p(x1x2)p(y1jx1x2)p(yjx2x1)!
(2); and (1) is obvious from U ¼ X1, then, in accordance
with (2), a degraded relay channel is one AGRCDAF
and (11) gives (12) in [2, theorem 1] C ¼ supp(x1x2)

min{I (X1X2; Y ), I (X1, Y1jX2)}.

2. If U ¼ X2, then there exists p(x1x2u) ¼ p(x1x2) such
that for a reversely degraded relay channel from (4) we can
have p(x1x2yy1) ¼ p(x1x2)p(yjx1x2)p(y2jx2)! (3) and (1)
and also (2) is obvious from U ¼ X2; (3), (1)!

(6)
(X1 !

X2Y ! Y1) or from (7) by U ¼ X2 we have (X1 !

X2Y ! Y1), then, a reversely degraded relay channel is one
AGRCDAF the capacity of which is obtained from (11)
C ¼ maxp(x1) maxx2

I (X1; Y jx2).

And, in this case, as mentioned in the definition,
U ¼ constant is not permissible and the relay cannot,
(X1 ! X2 ! Y1) or does not need (U has no information
for the relay) decode anything and can send what it
2
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receives, thus, X2 ¼ gðY1Þ or Y1 ¼ f ðX2Þ (g is reversible)
and (1)–(3) are obvious and (11) reduces to the capacity of
reversely degraded relay channel.

Remark: The capacity of reversely degraded relay channel
can also be achieved by EAF strategy.

For the reversely degraded relay channel (Fig. 1), we have

X1 ! X2Y ! Y1 (12)

and from [2, theorem 6], for EAF strategy, the following rate
is achievable

R ¼ I (X1; Y Ŷ 1jX2) (13)

with the relation from the channel distribution

X1Y ! X2Y1 ! Ŷ 1 (14)

and (12), (14) �!
(6)

X1 ! X2Y ! Ŷ 1 (15)

and (14), (1) �!
(6)

X1 ! X2 ! Ŷ 1 (16)

then, from (13), using (15) and (16), we have

R ¼ I (X1; Y Ŷ 1jX2) ¼ I (X1; Y jX2) ¼ I (X1; Y jX2Ŷ 1)

3. The capacity of the relay channel with full feedback
(theorem 3 in [2]) is obtained from (11) by U ¼ X1 and
Y1 ! (Y , Y1)

CFB ¼ supp(x1x2) min{I (X1X2; Y ), I (X1; YY1jX2)}

4. If Y1 ¼ f (X1X2), then Y1 is known at the transmitter
(assuming that the transmitter knows the first symbol of X2

and noting to the relay function) and according to the
property p2, U is also a function of X1 and X2 and we can
put U ¼ Y1, then there exists p(x1x2u) ¼ p(x1x2y1) such
that in this case, (1)–(3) are obvious for every (4) and (11)
reduces to the capacity of semi-deterministic relay channel
in [3, corollary(6)]

C ¼ maxp(x1x2) min{I (X1X2; Y ), H (Y1jX2)þ I (X1; Y jX2Y1)}

5. If X1 ¼ (XD, XR) and U ¼ XR, then there exists p(x1x2

u) ¼ p(xRxDx2) such that for orthogonal relay channel from
(4) we can have

p(x2xRxDyy1) ¼ p(x2)p(xRjx2)p(xDjx2)p(y1jx2xR)p(yjx2xD)

(17)

From (17), which is the definition of orthogonal relay
IET Commun., 2009, Vol. 3, Iss. 7, pp. 1208–1215
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channel [5], we have

XD! X2! XR (18)

XDY ! X2XR! Y1 (19)

XR ! X2XD! Y (20)

and (19) �!
(6)

(1) and (3), and (18) and (20)�!
(6)

(XR ! X2! Y ) (21)

(19)!

(Y ! X2XR! Y1) (22)

(21) and (22) �!
(6)

(XR! X2Y1! Y ) (23)

Then, a relay channel with orthogonal components in [5]
becomes one AGRCDAF (or the model (17) is a sub-set
of our general model) and the capacity in (11) is readily
reduced to the capacity in [5] [using (20), (21)]

C ¼ maxp(x2)p(xRjx2)p(xDjx2) min{I (XDX2; Y ), I (XR; Y1jX2)

þ I (XD; Y jX2}

6.1.1 Note. Clear demarcation of novelty of our
general model in relation to the other works
such as [4, 5]: N1: As mentioned before, the common
part of the capacity theorem for orthogonal relay channel in
[4, 5] and our capacity theorem is the achievability part.
This part is a consequence of Cover and El Gamal’s work
[2, theorem 7] as we have written in the proof of our theorem.

N2: The new and interesting part of our theorem is its
converse and the differences are below.

a. The orthogonal relay channel in [4, 5] and other special
relay channels are all sub-sets of our general model
(AGRCDAF) as we have shown in the above.

b. In [4, 5] it has been proved that the common rate from
[2, theorem 7] is the capacity of orthogonal relay channel
only, but we have proved that this common rate is the
capacity of a more general model (AGRCDAF) including
orthogonal and other special relay channels.

c. The capacity theorem for orthogonal relay channel in
[4, 5] is a special case of our capacity theorem and despite
our theorem, it does not give the capacity of special cases
such as semi-deterministic relay channel and the case
U ¼ X2.

6. The feedback from the relay to the transmitter does not
increase the capacity of the AGRCDAF because the
achievable rate in (theorem 3, [22]) by Ŷ ¼1 and V̂ ¼ U
Commun., 2009, Vol. 3, Iss. 7, pp. 1208–1215
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coincides with the upper bound in (theorem 1, [22]) by
V ¼ U and in accordance with (7).

6.2 Relay channel (U ¼1)

In accordance with (1) and (3), the definition considers every
AGRCDAF with U¼ constant or 1 or X2 as a reversely
degraded relay channel the capacity of which can also be
achieved by EAF strategy.

6.2.1 About the capacity of deterministic relay
channel [7]: In deterministic relay channel [7], the relay
finds only the bin of Y1 by receiving Y1 and sends it by a
noiseless link having the rate R0 to the receiver. Therefore
there is not any X2 and we have:

According to [7], the channel uses EAF strategy or hash
and forward strategy and hence, our theorem does nothing
to say about this channel.

6.2.2 About MSRC in [6]: If V ¼ 0, we reach to the
above 6.2.1. If V = 0, then, U ¼1 in our definition (the
channel uses EAF strategy), the conditions (1) and (2) of
AGRCDAF are satisfied, but the condition (3) is not
necessarily satisfied and MSRC is not a AGRCDAF.

If in MSRC the condition (3) is satisfied, then it will be a
reversely degraded relay channel using EAF strategy (this is
correct, because the relay only observes the corrupted
version of noise and is worse than the receiver) and our
capacity theorem gives its capacity as follows
(Y ! Y , S; Ŷ 1 ! U and X2S ¼ N in [6])

C ¼ I (X1; Y Ŷ 1jX2) ¼ I (X1; Y jX2Ŷ 1)! C

¼ I (X1; SY jX2Ŷ 1) ¼ I (X1; SjX2Ŷ 1)þ I (X1; Y jX2SŶ 1)

¼ 0þ I (X1; Y jX2SŶ 1) ¼ H (Y jX2SŶ 1)�H (Y jX1X2SŶ 1)

¼ H (Y jN Ŷ 1)�H (ZjX1N Ŷ 1) ¼ H (Y )�H (ZjŶ 1)

6.3 Consistency of the theorem with
previous results

We can validate our theorem by consistency of the terms in
(11) with previous results (the capacity region for broadcast
channel with degraded message sets [23] and multiple
access channel with partially co-operating encoders (in a
special case) [18]).

6.3.1 Broadcast channel with degraded message
sets [23]: By X2 ¼1, AGRCDAF (Fig. 1) is reduced to a
broadcast channel with degraded message sets because:

First

(3)! Y1 ! X1U ! Y
(4)! U ! X1 ! Y

�
¼)

(6)
Y1 ! X1 ! Y
1213

& The Institution of Engineering and Technology 2009



121

&

www.ietdl.org
Second

I (U ; Y1)þ I (X1; Y jU )�
(2)

I (U ; Y )þ I (X1; Y jU )

¼ I (X1U ; Y )¼
(4)

I (X1; Y )

Therefore min{I (X1; Y ), I (U ; Y1)þ I (X1; Y jU )} ¼ I (X1;Y ),
hence, we can establish the capacity region for broadcast
channel with degraded message sets from the terms in (11)
as follows (as in [23])

R0 � I (U ; Y1), R1 � I (X1; Y jU ), R0 þ R1 � I (X1; Y )

6.3.2 Multiple access channel with partially co-
operating encoders (in a special case) [18]: In
Fig. 1, we have one-sided co-operation between the
transmitters (the relay and the transmitter), then, in [18]
C21 ¼ 0, C12 ¼ I (U ; Y1jX2), M2 ¼1! R2 ¼ 0, and
from (11), the capacity region can be established the same
as in [18].

7 Conclusion
We have defined AGRCDAF strategy and showed that at
least the relay channels with known capacity are special
cases of it. Also, we have shown that our capacity theorem
is validated by its consistency with the capacity regions for
broadcast channel with degraded message sets and multiple
access channel with partially co-operating encoders (in a
special case). We claim that the capacity of general relay
channel might be described by one auxiliary random
variable or more variables depending on how we define the
role of the relay.
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