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Adaptive Spatial Resolution in Fast, Efficient,
and Stable Analysis of Metallic Lamellar
Gratings at Microwave Frequencies

Amin Khavasi and Khashayar Mehrany

Abstract— The technique of adaptive spatial resolution is for
the first time applied in fast and efficient Fourier-based analysis
of metallic lamellar gratings at microwave frequencies. Inasmuch
as the ultrahigh-contrast permittivity profile of these structures
is likely to incur numerical instabilities, the continuity condition
is heedfully imposed on the transverse electromagnetic fields and
an elegant, unconditionally stable matrix-based strategy is pro-
posed to rigorously analyze the microwave transmission of these
structures.

Index Terms—Adaptive spatial resolution, enhanced transmis-
sion, Metallic grating.

I. INTRODUCTION

IFFRACTION analysis of metallic gratings at microwave
D and radio frequencies is an extensively well-studied topic,
which; thanks to the duet features of frequency and polariza-
tion selectivity, has received plentiful attention in the past half-
century [1]-[8]. The recently discovered enhanced transmis-
sion of optical waves through two-dimensional metallic arrays
of subwavelength holes [9], however, was a brand new phe-
nomenon that revived the general interest in the electromag-
netic diffraction by metallic gratings with sub-wavelength fea-
tures, and, accordingly, granted a new lease on life to numer-
ical and experimental study of microwave transmission through
metallic gratings [10]-[16]. Yet, most of the reported numer-
ical studies at microwave frequencies depend on the brute force
and time consuming numerical techniques in the real space, e.g.,
the finite difference time domain (FDTD) [13], and the finite
element method (FEM) [15]. This is in contrast to the avail-
ability of dozens of semi-analytical fast and efficient simula-
tion methods in optical regime. Aside minor technical differ-
ences, all these methods are based on the Fourier expansion
of the periodic permittivity profile [17]-[19], and are capable
of efficiently analyzing metallic gratings in the so called re-
ciprocal space [20]. The inaccessibility of the fast and efficient
Fourier based methods in the microwave regime is to a certain
extent inevitable since the imaginary part of the permittivity,
i.e., normalized conductivity, of metals at these frequencies be-
comes awfully large, and contrasts sharply with the permittivity
of the neighboring dielectric; usually air, slits. This sharp con-
trast turns to be terribly troublesome as the Fourier expansion
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of the discontinuous permittivity profile of the structure should
be unavoidably truncated in computer calculations, and conse-
quently suffers from the Gibbs phenomenon, has an extremely
low convergence speed, and is gravely erroneous unless a large
number of Fourier components are retained.

This problem is here tackled by applying the technique of
adaptive spatial resolution (ASR), which employs a new coor-
dinate system to increase the spatial resolution around the dis-
continuities of the permittivity profile [21]. This mathematical
stratagem can substantially improve the overall rate of conver-
gence and has already proved useful in analyzing lamellar and
trapezoidal gratings at optical frequencies [21]—[23]. It has been
more recently reformulated in an easy-to-program matrix form,
which evades the eigenvalue problem in the neighboring homo-
geneous regions and can be easily applied to multilevel profiles
[23]. These two latter advantages are however bought at the ex-
pense of conditional stability, which, by the way, is a very im-
portant issue at microwave frequencies, where a large number
of space harmonics, i.e., Fourier components, are to be retained.
This problem is here fixed by duly rearranging the matrix equa-
tions, thanks to which the unconditional stability is guaranteed.
In this fashion, electromagnetic diffraction of highly conducting
lamellar gratings in general and the enhanced microwave trans-
mission in particular can be very efficiently studied. It should be
however noticed that the proposed method is limited to single
section structures and is currently presented for highly con-
ducting single section lamellar gratings.

This paper is organized as follows: the mathematical founda-
tion of the ASR technique is briefly reviewed in Section II. An
unconditionally stable implementation of the boundary condi-
tions by using the S-matrix propagation algorithm in the trans-
formed coordinate system is presented in Section I1I, and the re-
flection and transmission coefficients are then found in a simple
and stable way. Various numerical examples are provided in
Section IV, whereby the applicability and efficiency of the pro-
posed method are attested. Finally, conclusions are made in
Section V.

II. MATHEMATICAL FOUNDATION

Consider a typical lamellar grating configuration as shown
in Fig. 1. The metallic grating region with thickness d is char-
acterized by a piecewise constant periodic permittivity profile
e(z) = e(xz + A4) which separates two homogeneous media
with refractive indexes n; and n3. In accordance with Fig. 1, the
permittivity profile () on each interval of constancy between
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Fig. 1. Typical metallic lamellar grating.

neighboring jump points; i.e., for ;_; < x < xy, is equal to ei-
ther €4 (dielectric), or &, (metal). The complex permittivity of
the metal €, in the SI system; however, can be written in terms
of the metal conductivity o, and the free space wavelength )\
[1]

em = 1 — 7600 ). (D)
This structure is illuminated by a linearly polarized monochro-
matic uniform plane wave whose wave vector in region 1 is in-
clined at the angle 6 to the Oz axis.

The transverse electromagnetic fields can then be easily
found by applying the rigorous coupled wave analysis (RCWA),
also called the Fourier modal method (FMM), whereby the
original wave equation takes the form of a standard eigenvalue
problem in the discrete Fourier space [17]

MEy = [KS — Ko[le]]] Ey )
for TE polarization, and
MNHy = [[[1/e]]7 (Kllell 'Ky — k3) | Hy — (3)

for TM polarization. Here, kg is the vacuum wavenumber, [[f]]

denotes the Toeplitz matrix whose (m, n) entry is the (m —n)th

Fourier coefficient of f(x); hereafter denoted by f,,—,, and Kx

stands for the diagonal matrix whose ¢ th diagonal element is
2r

km' = k0n1 sin § — EL

“4)

The eigenvalues )\3 s and their corresponding eigenvectors Ey
for the TE polarization and Hy for the TM polarization then
make up the electromagnetic field distribution.

Despite being among the simplest and the most efficient semi-
analytical methods available at the optical frequencies [17], this
approach cannot be efficiently exercised in the microwave range
because the equivalent complex permittivity €, of the metallic
region is much larger than the dielectric permittivity €4, the con-
vergence rate of the Fourier series of the piecewise-constant per-
mittivity profile e(z) is awfully slow, and consequently the sizes
of the matrices involved in (2) and (3) are quite imposing. This
problem can, however, be considerably ameliorated if the Carte-
sian coordinate x is appropriately replaced by a new coordinate
u, which transforms the wave equation into the following eigen-
value problem in a new discrete Fourier space [23]

NBy = [=[[R] 7" (K5([eh]] - Kx[[h] 'Kx)| Ey  (5)
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for TE polarization, and

ANHy = [=[[h/e]] 7" (k3[[R)] — K[[eh]] "' Kx) | Hy  (6)
for TM polarization. Here, h(u) denotes the resolution function,
and is determined by the dependence between = and u coordi-
nates [23]

_dw

h(u) = T

(N
It can be easily seen that the Toeplitz matrices formed from
the Fourier series of the ultrahigh-contrast functions £(z) and
e~ 1(x) in the original (2)~(3) are now replaced by the Toeplitz
matrices corresponding to the new functions h(u)e(u) and
h(u)e~!(u) in the transformed (5)—(6). These functions should
be smooth enough to guarantee the fast convergence of their
corresponding Fourier series. Now, if the resolution function
h(u) is almost zero at 4 = w; corresponding to the former
jump points z = x; in the Cartesian coordinate system shown
in Fig. 1, then the abovementioned functions h(u)e(u) and
h(u)e=1(u) are much smoother, can be accurately approxi-
mated by keeping not a very large number of Fourier terms,
and result in Toeplitz matrices of manageable size. In this
manuscript, the coordinate « is chosen in accordance with what
is proposed by Vallius et al. [23]

x(u) = a1 + agu + ;—3 sin <27rw> (8a)
T

U — Up—1
where

UWTi—1 — U—1T]

a = —— (8b)

Uy — Uj—1

Ty — Ti—1

ay = ———— (8¢c)
Uy — Uj—1

az = G(w —w—1) — (x1 — z1-1) (8d)

and G is an almost zero constant, here chosen to be G = 0.001.

This transformation meets the abovementioned criterion of
being almost zero at v = wu;, and shows a good convergence
even in the microwave range, where the original permittivity
function is very hard to be approximated by its truncated Fourier
series.

Having chosen a fitting coordinate u, like the one given in (8),
the electromagnetic field distribution can be expressed in terms
of the eigenvalues and eigenvectors of (5)-(6)

N
o = 3

q=—N

Agp) exp ()\((Ip)z) + Bép) exp (—)\((Ip)z)

N
C Y U exp(— jkzmu)] )
m=—N

where W(®) represents either the transverse electric field for the
TE polarization or the transverse magnetic field for the TM po-
larization, and the superscript p = 1, 2, and 3 denote the in-
cident, the grating, and the transmission regions, respectively.
AP s and B s are the yet unknown coefficients which are
to be determined once the boundary conditions are duly ap-
plied. m,q € [-N, N], N stands for the truncation order of
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the Fourier series, )\gp ) and 11’5,7{21 are the square root of the ¢ th

eigenvalue, and the m th component of the ¢ th eigenvector in
the standard eigenvalue problem given in (5) for the TE polar-
ization and in (6) for the TM polarization, respectively. Further-
more, the )\((Ip ) s are chosen in such a way that

Re (A) +Tm () <. (10)

III. STABLE IMPLEMENTATION OF THE BOUNDARY CONDITIONS

To find the yet unknown coefficients A% and B, the
transverse electromagnetic fields of the grating region should
be matched to those of the incident and transmission regions.
This can be accomplished in two different ways.

One simple strategy is that the transverse electromagnetic
field within the grating, i.e., U2 s first transformed back to
the original Cartesian coordinate system (z,y,z), and then
gets matched to the Rayleigh expansion without the grating
region [23]. In the first step, the electromagnetic field distri-
bution, which in its current form is expressed as a Floquet’s
harmonic expansion in the u space, ought to be written as a
Floquet’s harmonic expansion in the x space. To this end, the
term exp(—jk,,,u) in (9) should be projected on the Fourier
basis in the = space. This can be easily performed by using the
transformation matrix [T, | whose (p, m) entry reads as [23]

1

Ao
(Turlom = 3= /0 () explj (kap (1) — k)] dus (1)

and can be very efficiently calculated by using the fast Fourier
transform of h(u) exp[j(kepz(u) — kzou)].

By multiplying the transformation matrix [T,,] with the
eigenmatrix including the eigenvectors of the standard eigen-
value problem given in (5)—(6) for the (u,y,z) coordinate
system, the eigenmatrix containing the desired set of eigen-
vectors in the original Cartesian system (z,y,z) can be
straightforwardly obtained

v = [T,,]¥® (12)
where ¥(2) denotes the eigenmatrix whose (1, ¢) entry is the
m th component of the gth eigenvector in the transformed coor-
dinate system, \Ill(ff()l, and the ¥ 552) represents the same eigenma-
trix in the original Cartesian coordinates. The subscript x shows
that the expression is given in the coordinate system (z, y, 2).

Once the \IIE?) matrix is calculated, the Floquet’s harmonic
expansion of the electromagnetic field distribution within the
grating region can be obtained without solving the standard
eigenvalue problem in the Cartesian coordinate system (z, y, 2)
given in (2)—(3). This is very important because Toeplitz ma-
trices that appear in the original eigenvalue problem are formed
of the slowly-convergent Fourier coefficients of discontinuous
profiles with sharp contrasts. It is therefore impossible to extract
the eigenvectors directly in the Cartesian coordinates.

In the next step, the electromagnetic field distribution within
the grating region is to be matched with the Rayleigh expansion
without the grating region. Since the refractive indexes of the
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regions 1 and 3 are homogeneous, the Rayleigh expansion reads
as

U = exp(—j(kz102 + keoz))
N
+ Y Riexp(i(ka1iz — keiz))  (13)
i=—N
in region 1, and

N
\IJ;S) = Z T exp(—j(k=3i(z — d) + kyiz))
i=—N

(14)

in region 3. Here, the R;s and 7;s denote reflected and trans-
mitted orders, respectively, and
kai = \/kin? — k2., 1=1,3. (15)

Now that all field expressions are available in the original
Cartesian coordinates, an unconditionally stable recursive
matrix algorithm, e.g., the scattering matrix algorithm, can be
applied to find all diffraction efficiencies [24]. In this fashion,
solving the eigenvalue problem in the homogeneous regions
1 and 3 is avoided, and the reflection and transmission orders
are straightforwardly obtained. This method can be easily
extended to analyze multilayer structures, where one should
first find the eigenmatrix of every modulated layer in a similar
fashion, and then apply the conventional scattering matrix
propagation algorithm to extract the diffracted orders. It should
be however noticed that, despite all the benefits this strategy
offers, the transformation matrix [T,,.] is ill-conditioned and
incurs numerical instability if inverted during the calculation.
Unfortunately, every unconditionally stable recursive matrix
algorithm including the scattering matrix method requires
the inversion of the \Iléz) matrix [24], and therefore of the
transformation matrix [T,.]. This approach is then seriously
liable to numerical instabilities particularly in the microwave
range, where the truncation order is presumably large. This
point is clearly demonstrated in Section IV, where the condi-
tion number of the transformation matrix is plotted versus the
truncation order N. The observed instabilities are thus due to
the ill-conditioned nature of the transformation matrix and have
nothing to do with the conventional instabilities of the standard
RCWA, which are conventionally associated with the presence
of both growing and decaying waves, and which can be avoided
by using the seemingly stable recursive matrix algorithms, e.g.,
scattering matrix.

The other possible strategy is that the continuity condition
of the tangential electromagnetic fields at each interface is di-
rectly applied at the transformed coordinate system (u,y, z),
the reflection and transmission coefficients are found, and the
obtained results are then brought back to the original Cartesian
coordinate system (z,y, z). Although the eigenvalue problem
should be solved in all three regions, the unconditional stability
of this method is guaranteed as the ill-conditioned transforma-
tion matrix is not to be inversed.

Itis however worth noticing that in contrast to the optical case
where the former method is unlikely to become unstable and is
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therefore preferred, the latter approach should be inevitably fol-
lowed here in the microwave range, where the truncation order is
large enough to cause unwanted instabilities. Thus, the second
approach is adopted and the S-matrix algorithm is applied di-
rectly in the transformed coordinate system (u, y, z), where the
layer s matrix reads as,

) I o g+ _g® 17!
5" =1o o) | | Qe+ Q)
v g+l e 0
X[Qoo) QD) }[ 0 1} (16)

Here, I is the identity matrix, ¢(?) is a diagonal matrix whose
diagonal elements are exp()\l(f)d)? ©1) and 3 are both the
identity matrix, the W (P) matrix includes the \Ilgﬁ,)l’s, and

Q(P) — \I/(P)/\(P) (17)

for TE polarization, and

QW) = [[1/e(w)] TPAP (18)

for TM polarization. In these expressions, AP) s a diagonal
matrix whose diagonal elements are AY.

At this point, the S-matrix can be recursively obtained in
terms of the abovementioned layer s matrix [24]. For evaluating
the yet unknown A((IS) and B(gl); however, only two elements of
the S-matrix, viz. Si1 and Sa1, are needed

(2 S -2\ ! .1
Su = 3§1) (I - 552)%1)) 5§1)

-1
S = 80 + 502 (- s052) ™ )

19)
(20)

and the transmitted and reflected orders in the transformed co-
ordinate system (u, y, z) can be written as

A® = g, ,AD
BMW = 6, AM

21
(22)

where A(l)7 A®) and BM vectors include the incident orders
Agl), the transmitted orders Agg) , and the reflected orders Bél) ,
respectively.

In contrast to the sought-after A® and BM vectors, A is
the incident wave in the transformed coordinate system (u, ¥, 2)
and has only one nonzero element qul) = 1. The index of the
only nonzero element of this vector, r, is the same as that of
the eigenvalue which is closest to the z component of the in-
cident wave-vector, —jk,19 = —jkony cosf. To fully deter-
mine the A vector, i.e., to extract the index 7, the eigen-
value /\7(}) ~ —jkynicosf is to be spotted. However, in the
particular case when k,;; = k19 for i« # 0, there would be
two identical eigenvalues both very close to the tagged value
—jkony cos @, and consequently the correct index of the nonzero
element, 7, cannot be so easily determined. To overcome this
difficulty, the incident angle should be slightly changed to vi-
olate the k.;; = k.10 condition. The correct index r can then
be extracted at the slightly changed incident angle. Once the
nonzero element of the A1) vector, AS-I) = 1, is found, the re-
flection and transmission coefficients in the (u, y, z) coordinate
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system, i.e., A<(13) and Bél), can be easily determined in terms
of the S7; and Sa; elements of the S-matrix.

The reflection and transmission orders in the original Carte-
sian coordinates, R; and T}, can then be calculated by back
transformation of the A(®) and B() vectors. This can be
achieved by following a procedure very much like the one used
to transform the electromagnetic field distribution within the
grating region in the (u, ¥, z) coordinate system, ¥(?), back to
the original Cartesian coordinate system, ¥

(T3] = [Tw]\Il(3)A(3)
[R;] = [Tuz]‘]:’(l)B(l)

(23)
(24)

The desired diffraction efficiencies can then be calculated by
using the Poynting theorem

kz i
DEy; = Re (—1 ) IR 25)
kzl()
for the diffracted orders in region 1, and
kz )
DE;; = CRe <—3> T (26)
kle

for the diffracted orders in region 3. Here, C' is a polarization
dependent factor which is either 1 for the TE or (e1/e3)? for
the TM polarization.

As already mentioned, the latter strategy of applying the
boundary conditions at the transformed coordinate system is
unconditionally stable as it does not involve the inverse of the
ill-conditioned [T..] matrix. It should be however noticed
that the unconditional stability of this approach is not neces-
sarily held in multilayer structures with different sections each
having their own jump points and compositions. In such cases,
every modulated layer has its own profile and calls for its own
resolution function h(u). It will be therefore impossible to
apply all the boundary conditions in one specific coordinate
system and one has to invert ill-conditioned transformation
matrices to apply the continuity condition of transverse elec-
tromagnetic field distribution at each interface. Nevertheless, if
a multi-section structure with only a small number of sections
is to be considered, then a single coordinate transformation
can be found in such a way that a good spatial resolution be
simultaneously guaranteed around the discontinuities and jump
points of all sections. Naturally, the parametric representation
in such a coordinate system has several transition points, i.e.,
u;’s, corresponding to all the jump points present in every
section of the structure. The presence of too many transition
points in a multi-section structure with not a small number of
sections therefore rein in the convergence rate, and makes the
proposed approach somewhat unpractical.

IV. NUMERICAL EXAMPLES

As the first numerical example to demonstrate the ef-
ficiency and stability of the proposed method, a simple
metallic lamellar grating is considered. The grating pa-
rameters in accordance with Fig. 1 read as follows:
e1 = €3 = €4 = 1,0 = 30°,X = Ag = d = 1 (cm),
and 0 = 1.45 x 10° (S/cm) for g < < 21 = 0.3 Ag. In
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Fig. 2. Electromagnetic reflectance of a simple metallic lamellar grating versus
the truncation order N calculated by using the proposed method (solid line)
and the optical approach of applying the boundary conditions at the original
Cartesian coordinates: (a) for TE polarization and (b) for TM polarization.

Fig. 2, the overall reflectance of the structure for both major
polarizations is plotted versus the truncation order V. First, the
proposed unconditionally stable strategy is followed and the
obtained numerical results are depicted by solid line. Thanks
to the technique of adaptive spatial resolution, a very good
convergence rate is observed. Second, the more straightforward
approach of applying the boundary conditions in the original
Cartesian coordinates [23] is followed, and the unstable numer-
ical results are plotted by dashed line. The incurred instability
is further examined in Fig. 3, where the condition number of
the transformation matrix is plotted versus the truncation order
N. This latter figure clearly validates the arguments presented
in the previous section.

As another example, the same metallic lamellar grating is
reinvestigated this time in the infrared regime at the free space
wavelength of A = 1.3875 ym. The metallic region is made of
silver whose permittivity is £, = (0.1 — 58.94)2, the incoming
TM polarized wave is incident at § = 30°, and Ag = d = .
The geometrical shape of the grating is the same as before. Inas-
much as the contrast between metallic and dielectric permit-
tivites in the infrared regime is not as high as in the microwave
range, the conventional RCWA is still applicable. The results
obtained by following each of the two strategies discussed in
Section III are then compared against those obtained by using
the conventional RCWA with the correct Fourier factorization
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Fig. 3. Condition number of the transformation matrix, [T, ], versus the trun-
cation order V.
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Fig. 4. Reflection of a simple metallic lamellar grating versus truncation order

in the infrared regime calculated by using the conventional RCWA (dashed line),

the proposed adaptive spatial resolution technique (solid line), and the optical

approach of applying the boundary conditions at the original Cartesian coordi-
nates (dotted line).

method [17]. This is shown in Fig. 4, where the overall re-
flectance of the structure is calculated by applying the uncon-
ditionally stable ASR technique (solid line), the conventional
RCWA with the correct Fourier factorization (dashed line), and
the conditionally stable ASR technique (dotted line). This figure
shows that the transformation of the coordinate system can con-
siderably improve the convergence rate of the solution. It should
be however noticed that applying the boundary conditions at
the original Cartesian coordinates incur numerical instability
for truncation orders N > 40. This numerical instability is at-
tributed to the large condition number of the transformation ma-
trix already plotted in Fig. 3. Fortunately, the numerical conver-
gence is achieved for truncation orders N > 20, and in con-
trast to the first example, the more simple strategy of applying
boundary conditions in the original Cartesian coordinate system
is working for 20 < N < 40.

Finally, a compound metallic grating with extremely narrow
slits is investigated. This structure is schematically shown in
Fig. 5, and is composed of three stacks of aluminum (¢ =
1.45 x 10° S/cm) each separated by narrow air slits (£, = 1).
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Fig. 6. Zeroth-order transmitted diffraction efficiency of the compound
metallic grating illustrated in Fig. 4: A¢ = 10 mm, d = 19.8 mm,
b = 2a = 0.5 mm and ¢ = 3 mm, calculated by propose method (solid line).
The experimental results as reported in [15] are also presented by circles.

The geometrical parameters in accordance with Fig. 5 then read
as: Ag = 10 mm, d = 198 mm, b = 2¢ = 0.5 mm, and
¢ = 3 mm. It is assumed that the structure is illuminated by a
normally incident TM polarized wave. The zeroth-order trans-
mitted diffraction efficiency, DE3y, is then plotted versus fre-
quency in Fig. 6. The obtained results calculated by keeping
(2N + 1 = 201) Fourier terms (solid line) show a very good
agreement with the experimental data as reported in [15] (cir-
cles). Despite the facts that there are six jump points within each
unit cell, that the air slits are quite narrow, and that the struc-
ture supports TM polarized resonant anomalies, the proposed
Fourier based technique is much faster than the brute force fully
numerical techniques, e.g., the FEM or the FDTD. It can pro-
vide accurate and stable results very much suitable for studying
the role of different grating parameters in controlling diffraction
properties of such challenging structures. For instance, the effect
of ¢, i.e., width of the aluminum regions, on shifting the absorp-
tion spectrum of the same structure is demonstrated in Fig. 7,
where the total absorption of the structure with ¢ = 1,2, and
3 mm is plotted versus frequency. This figure clearly demon-
strates that the frequency of the maximum absorption can be
controlled by changing c.

V. CONCLUSION

Numerical analysis of the metallic lamellar gratings at mi-
crowave frequencies has been thus far believed to be out of reach
of the Fourier modal methods. Thanks to the adaptive spatial
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Fig. 7. Absorption spectrum of the same compound grating with ¢ = 1 mm
(dotted line), 2(dashed line) and 3 mm (solid line).

resolution technique already proposed in the optical regime, the
fast and efficient Fourier based technique is now accessible even
at microwave frequencies, where the permittivity profile of the
structure is ultrahigh-contrast and cannot be accurately approxi-
mated by using truncated Fourier series. In contrast to the optical
regime; however, the appropriate boundary conditions cannot be
straightforwardly applied here at microwave frequencies. It is
therefore necessary to follow the proposed matrix-based algo-
rithm, which does not need the inversion of the ill-conditioned
transformation matrix. This work opens new hopes for fast and
efficient modeling of enhanced microwave transmission through
metallic gratings with narrow slits.
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