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On Optimum Asymptotic Multiuser Efficiency
of Randomly Spread CDMA
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Abstract— We extend the result by Tse and Verdú on the
optimum asymptotic multiuser efficiency of randomly spread
code division multiple access (CDMA) with binary phase shift
keying input. Random Gaussian and random binary antipodal
spreading are considered. We obtain the optimum asymptotic
multiuser efficiency of a K -user system with spreading gain N
when K and N → ∞ and the loading factor, (K/N), grows
logarithmically with K under some conditions. It is shown
that the optimum detector in a Gaussian randomly spread
CDMA system has a performance close to the single user system
at high signal-to-noise ratio when K and N → ∞ and the
loading factor, (K/N), is kept less than (log3 K/2). Random
binary antipodal matrices are also studied and a lower bound
for the optimum asymptotic multiuser efficiency is obtained.
Furthermore, we investigate the connection between detecting
matrices in the coin weighing problem and optimum asymptotic
multiuser efficiency. We obtain a condition such that for any
binary input, an N × K random matrix, whose entries are
chosen randomly from a finite set, is a detecting matrix
as K and N → ∞.

Index Terms— Code division multiple access (CDMA), random
spreading, multiuser detection, optimum asymptotic multiuser
efficiency, detecting matrices, compressive sensing.

I. INTRODUCTION

CALCULATING optimum asymptotic multiuser efficiency
of CDMA systems for different signature codes has

received attention because this parameter shows the per-
formance loss of the optimum detector in comparison
with the single user system when the background noise
vanishes [1], [2]. Tse and Verdú in [2] prove that the optimum
asymptotic multiuser efficiency for a CDMA system with
Binary Phase Shift Keying (BPSK) input signal and inde-
pendent and identically distributed (i.i.d.) random spreading
with N chips approaches 1 as the number of users, K , tends
to infinity and the loading factor, K

N , is kept equal to an
arbitrary nonzero constant. As a consequence, in large scale
randomly spread CDMA systems, the performance is close
to the performance of the single user system at high Signal
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to Noise Ratio (SNR). In the related context of compressive
sensing [3], the authors of [4] showed that the result of
Tse and Verdú is not restricted to binary input signals, but
holds for any input alphabet with finite cardinality. However,
authors in [2] and [4] obtain their results only when the loading
factor is kept finite and constant. In this paper, we generalize
the theorem in [2] and obtain the optimum asymptotic multi-
user efficiency of a CDMA system with random spreading in a
more general condition. Random binary antipodal and random
Gaussian spreading matrices are considered. Moreover, the
input signal is assumed to be BPSK. It is shown that the
optimum asymptotic multiuser efficiency converges to 1 also
when the loading factor grows logarithmically with the number
of users.

We also investigate the connection between detecting
matrices in mathematics and the optimum asymptotic multi-
user efficiency. Detecting matrices originated from the coin
weighing problem in mathematics [5], [6]. We use the bounds
in random detecting matrices as supplement of the obtained
results on the optimum asymptotic multiuser efficiency.
We also generalize the bound on random binary detect-
ing matrices by Erdös and Rényi in [7] for matrices
whose entries are chosen randomly from a finite set of
numbers.

The rest of this paper is organized as follows. In section II,
the main theorems about optimum asymptotic multiuser
efficiency for binary antipodal and Gaussian random
spreading are presented. In Section III, the connection
between detecting matrices and optimum asymptotic multi-
user efficiency is investigated. Finally, section IV concludes
the paper.

II. OPTIMUM ASYMPTOTIC MULTIUSER EFFICIENCY

Multiuser efficiency has been used as a common
performance measure of detectors in CDMA systems. For the
optimum detector, it is called optimum multiuser efficiency.
Optimum asymptotic multiuser efficiency was introduced by
Verdú in [1] to measure the performance of the optimum
receiver when noise vanishes.

Assume a randomly spread CDMA system with a discrete
model

y = Hb + n, (1)

where H is an N × K spreading matrix whose elements are
i.i.d. and have a symmetric probability density function (pdf).1

1A random variable x has a symmetric pdf ρ(x) if for every α,
ρ(α) = ρ(−α).
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b is the data vector that bi ∈ {±1}, n ∼ N (0, σ 2 I) is the
additive white Gaussian noise vector and y is the received
vector. Note that in (1), the number of users is K and the
number of chips is assumed to be N . Moreover, the users are
assumed to have unit power. In the considered model, all users
have the same asymptotic multiuser efficiency [8]

η
�= 2 lim

σ→0
σ 2 log

(
1

Pe(σ )

)
, (2)

where Pe(σ ) is the bit-error rate of the users. Then, the
optimum asymptotic multiuser efficiency is calculated as
follows [8]

η = min
x∈{±1,0}K \{0}

xT Rx, (3)

where R �= H† H and x is the error vector. η is in [0, 1] for
any given K and N . In [2], it is proven that when K , N → ∞
and K/N is kept constant and finite, η converges to 1 almost
surely. Therefore, an interesting question is that whether it
is necessary to keep K/N finite. In fact, the question is
what is the maximum possible K/N to have η converging
to 1. This question applies to compressive sensing as well.
In compressive sensing, it is desired to find a transfer matrix
with minimum number of rows to compress a sparse data
vector [3]. Note that unlike compressive sensing in this paper
we consider BPSK input signal which results in a ternary error
vector. In the remaining parts of this section we obtain some
sufficient bound on K/N as an extension of the result in [2].

Let EK be the event that xT Rx < 1 for at least one nonzero
error vector x ∈ {±1, 0}K . Therefore,

P(EK ) = P

⎛
⎝ ⋃

x∈{±1,0}K \{0}
xT Rx < 1

⎞
⎠. (4)

By applying the union bound to (4), an upper bound is
obtained as

P(EK ) ≤
∑

x∈{±1,0}K \{0}
P(xT Rx < 1). (5)

In the following parts, we consider random binary antipodal
and random Gaussian spreading matrices. We derive some
conditions that η, as defined in (3), converges to 1 almost
surely.

A. The Optimum Asymptotic Multiuser Efficiency for
i.i.d. Binary Antipodal Random Spreading

In this part, it is assumed that the entries of the spreading
matrix, Hi, j , are chosen randomly from

{
± 1√

N

}
with equal

probability. The input signal, b, is also considered to be BPSK.
We first present LEMMA 1, LEMMA 2 and LEMMA 3 which
are used in the main theorems.

Lemma 1: Let Hi, j ∈
{
± 1√

N

}
. For every error vector

x ∈ {±1, 0}K with odd weight,2 P
(
xT Rx < 1

) = 0.

2By the weight of a vector we mean the number of nonzero elements of it.

Proof: Let u(x) = [u1(x), · · · , uN (x)]T = H x. Hence,
we have

xT Rx =‖ u(x) ‖2=
N∑
�=1

u�(x)2. (6)

For every x with an odd weight, it can be shown that

u�(x)2 ≥ 1

N
, (7)

therefore, (6) and (7) result in xT Rx ≥ 1 and this proves
the lemma.

Lemma 2: Let x j be an error vector with even weight
2 j > 0 and B j be the event that the number
of nonzero elements of u(x j ) is less than N

4 . Then,
P(xT

j Rx j < 1) ≤ P(B j ).

Proof: The weight of x j is an even number. Therefore,
for a nonzero element u�(x j ) we have

u2
�(x j ) ≥ 4

N
. (8)

If xT
j Rx j < 1 then from (6) and (8) it can be proven that B j

happens. Therefore,

P(B j |xT
j Rx j < 1) = 1. (9)

From (9), it is concluded that

P(B j ) ≥ P(xT
j Rx j < 1), (10)

and this proves the lemma.
Lemma 3: If the entries of H are i.i.d. and have a symmet-

ric pdf f (·) then for all x ∈ {±1, 0}K with a same weight,
P(xT Rx < 1) is equal.

Proof: Proof is given in Appendix A.
In the following theorem, a new bound for the optimum

asymptotic multiuser efficiency of a CDMA system with
binary antipodal random spreading matrix is presented.

Theorem 1: For the CDMA system (1) with b ∈ {±1}K and
Hi, j ∈

{
± 1√

N

}
, the optimum asymptotic multiuser efficiency

converges to 1 almost surely as K , N → ∞, and K
N log3 K is

kept less than 3
8 .

Proof: Based on LEMMA 1, (5) can be written as

P(EK ) ≤
∑

x∈{±1,0}K \{0}, even weight x

P(xT Rx < 1). (11)

The entries of H are i.i.d. and have a symmetric pdf there-
fore based on LEMMA 3 for all x with the same weight,
P(xT Rx < 1) are equal. Thus, (11) can be written as follows

P(EK ) ≤

 K

2 �∑
j=1

(
K

2 j

)
22 j P(xT

j Rx j < 1), (12)

where x j is an arbitrary vector with weight 2 j . Using
LEMMA 2 in (12) results in

P(EK ) ≤

 K

2 �∑
j=1

(
K

2 j

)
22 j P(B j )

=

 K

2 �∑
j=1

(
K

2 j

)
22 j

N
4 −1∑
i= 0

(
N

i

)
p( j)N−i (1 − p( j))i, (13)
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where

p( j) = P(u�(x j ) = 0) =
(

2 j

j

)
2−2 j . (14)

The Binomial distribution function f (i) = (N
i

)
p( j)N−i

(1 − p( j))i is an increasing function for i < im
�=


N(1 − p( j))�. Furthermore, in Appendix B it is proven that

N (1 − p( j))� ≥ ⌊ N

2

⌋
. Therefore, an upper bound for (13) is

derived as

P(EK ) ≤

 K

2 �∑
j=1

(
K

2 j

)
22 j

N
4 −1∑
i=0

(
N

i

)
p( j)N−i (1 − p( j))i

≤

 K

2 �∑
j=1

(
K

2 j

)
22 j N

4

(
N
N
4

)
p( j)N− N

4 (1 − p( j))
N
4 . (15)

To simplify more, the following inequality is used(
m

r

)
≤ 2mh( r

m ), (16)

where

h(t) = −t log2 t − (1 − t) log2(1 − t), (17)

denotes the binary entropy function. The proof of (16) is given
in Appendix C. By using (16), (15) can be written as

P(EK ) ≤

 K

2 �∑
j=1

N

4
2

K
(

h
(

2 j
K

)
+ 2 j

K

) [
2

4h
(

1
4

)
p( j)3(1 − p( j))

]N/4

.

(18)

We wish to prove that the bound in (18) converges to 0 in
the limit K , N → ∞ while ζ = K

N log3 K is kept less than 3
8 .

In this regard, we divide the range of summation j =
1, · · · , 
 K

2 � into two, as follows

P(EK ) ≤ S1 + S2, (19)

S1 =
j0∑

j=1

N

4
2

K
(

h
(

2 j
K

)
+ 2 j

K

)[
2

4h
(

1
4

)
p( j)3(1 − p( j))

]N/4

,

(20)

S2 =

 K

2 �∑
j= j0+1

N

4
2

K
(

h
(

2 j
K

)
+ 2 j

K

)[
2

4h
(

1
4

)
p( j)3(1 − p( j))

]N/4

,

(21)

where j0 = 
 K
2(log2 K )u � and u > 1 is a constant.

We first show that the sum S1 tends to 0. We use the bound

h(t)+ t ≤ −t
(
log2 t − log2(2e)

)
, (22)

which is tight as t → +0. Since the right-hand side of (22)
is an increasing function of t , one has, for j = 1, · · · , j0,

h

(
2 j

K

)
+ 2 j

K
≤ u log2 log2 K

(log2 K )u
+ log2(2e)

(log2 K )u
. (23)

On the other hand, p( j) is a decreasing function of j with
p(1) = 1

2 . Furthermore, for 0 ≤ x ≤ 1
2 , the function x3(1− x)

is an increasing function of x . Thus the factor p( j)3 (1 − p( j))
can be bounded from above by 1

24 , so that one has

2
4h
(

1
4

)
p( j)3(1 − p( j)) ≤ 2

4
(

h
(

1
4

)
−1

)
. (24)

One thus has

S1 ≤ K N

8
(
log2 K

)u 2
uK log2 log2 K
(log2 K )u + K log2(2e)

(log2 K )u +N
(

h
(

1
4

)
−1

)
(25)

As K → ∞, the following holds

log2 log2 K(
log2 K

)u = o

(
1

log2 K

)
. (26)

To show that it holds, consider the behavior of

log2 log2 K(
log2 K

)u−1 (27)

as K → ∞. Let κ
�= (

log2 K
)u−1. Then one has κ → ∞ as

K → ∞, and

log2 log2 K(
log2 K

)u−1 = log2 κ

(u − 1)κ
→ 0, (28)

which proves (26). Using (26) results in that the dominant
term in the exponent of (25) is N

(
h
( 1

4

)− 1
)
, which tends

to −∞ as K → ∞. This proves that S1 → 0 holds.
We next show that S2 also tends to 0 provided that ζ < 3

8
holds. To this end we use some bounds as follows. Since the
function h(t)+ t takes its maximum at t = 2

3 , one has

h

(
2 j

K

)
+ 2 j

K
≤ h

(
2

3

)
+ 2

3
= log2 3. (29)

Next we use the following bound

p ( j) =
(

2 j

j

)
2−2 j ≤ e

π
√

2 j
, (30)

which is proven in Appendix D, as well as the fact that p( j)
is a decreasing function of j . Thus one has, for j = j0 +
1, · · · , 
 K

2 �,

p( j)3(1 − p( j)) ≤
(

π2 K

e2
(
log2 K

)u

)−3/2

. (31)

Applying the presented bounds, one can write (21) as

S2 ≤
(

K

2
− K

2
(
log2 K

)u + 1

)
× N

4
2N h

(
1

4

)
+ K log2 3

− (3N/8)
(
log2 K + 2 log2 (π/e)− u log2 log2 K

)
.

(32)

The right-hand side vanishes in the limit K → ∞ provided
that N goes to infinity in such a way as to satisfy

ζ = K log2 3

N log2 K
<

3

8
. (33)

This proves that S2 → 0 holds when ζ < 3/8.
Therefore, we have

lim
K→∞ P(EK ) = 0, (34)
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if

ζ <
3

8
. (35)

Finally, (25), (32) yield

∞∑
K=1

P(EK ) < ∞, (36)

if ζ < 3
8 . Therefore, by using the Borel-Cantelli lemma [9]

and the fact that the maximum possible value for η is 1, it is
concluded that η converges to 1 almost surely if ζ < 3

8 .
In the next theorem we derive a lower bound for the

optimum asymptotic multiuser efficiency of binary antipodal
randomly spread CDMA for 3

8 ≤ ζ < 1
2 .

Theorem 2: The optimum asymptotic multiuser efficiency
is greater than γ ∈ (0, 1) almost surely as K , N → ∞,
if ζ = K

N log3 K is kept less than (4 − γ )/8.
Proof: To prove THEOREM 2, we first introduce a

generalized form of LEMMA 2 as LEMMA 4.
Lemma 4: Let x j be a vector with weight 2 j and Vj be

the event that the number of nonzero elements of u(x j ) =
[u1(x j ), u2(x j ), · · · , uN (x j )]T is less than Nγ

4 where γ ∈
(0, 1). Then, P(xT

j Rx j < γ ) ≤ P(Vj ).
Let EK ,γ be the event that xT Rx < γ for at least one

nonzero error vector x. Then, a similar procedure as in the
proof of THEOREM 1 is used. Moreover, in the proof of
THEOREM 2, LEMMA 4 is used instead of LEMMA 2. One has

P(EK ,γ ) = P

⎛
⎝ ⋃

x∈{±1,0}K \{0}
xT Rx < γ

⎞
⎠

≤
∑

x∈{±1,0}K \{0}
P(xT Rx < γ )

=

 K

2 �∑
j=1

(
K

2 j

)
22 j P(xT

j Rx j < γ )

≤

 K

2 �∑
j=1

(
K

2 j

)
22 j P(Vj )

≤

 K

2 �∑
j=1

(
K

2 j

)
22 j

Nγ
4 −1∑
i=0

(
N

i

)
p( j)N−i (1 − p( j))i

≤

 K

2 �∑
j=1

(
K

2 j

)
22 j Nγ

4

(
N
Nγ
4

)
p( j)N− Nγ

4 (1 − p( j))
Nγ
4

≤

 K

2 �∑
j=1

Nγ

4
2

K
(

h
(

2 j
K

)
+ 2 j

K

)

×
[
24h( γ4 )p( j)4−γ (1 − p( j))γ

]N/4
. (37)

We bound the right-hand side of the above inequality in the
same way as in the proof of THEOREM 1. Specially, we have

P(EK ,γ ) ≤ S1,γ + S2,γ , (38)

S1,γ =
j0∑

j=1

Nγ

4
2

K
(

h
(

2 j
K

)
+ 2 j

K

)

×
[
24h( γ4 )p( j)4−γ (1 − p( j))γ

]N/4
, (39)

S2,γ =

 K

2 �∑
j= j0+1

Nγ

4
2

K
(

h
(

2 j
K

)
+ 2 j

K

)

×
[
24h( γ4 )p( j)4−γ (1 − p( j))γ

]N/4
, (40)

where j0 = 
 K
2(log2 K )u � and u > 1 is a constant. We will show

that both S1,γ and S2,γ tend to 0 as K , N → ∞ while ζ is
kept less than 4−γ

8 .
We first show that S1,γ → 0 holds. since one has

d

dx
x4−γ (1 − x)γ = x3−γ (1 − x)γ−1 ((4 − γ )(1 − x)− γ x)

= x3−γ (1 − x)γ−1 ((4 − γ )− 4x), (41)

the function x4−γ (1 − x)γ is an increasing function for x ∈[
0, 1 − γ

4 ). Note that the interval
[
0, 1 − γ

4 ) contains 1/2
whenever γ ∈ (0, 1). Thus, the factor p( j)4−γ (1 − p( j))γ can
be bounded from above by 1/24. The proof that S1,γ → 0
holds is complete by observing

24h( γ4 )p( j)4−γ (1 − p( j))γ ≤ 24(h( γ4 )−1). (42)

In order to prove that S2,γ → 0 holds, we use instead of (31)
the following inequality

p( j)4−γ (1 − p( j))γ ≤
(

π2 K

e2
(
log2 K

)u

)−(4−γ )/2
. (43)

Repeating the same argument as in the proof of THEOREM 1,
one can show that S2,γ → 0 holds when ζ < (4 − γ )/8.
Therefore, it is obtained that η is greater than γ almost
surely if

ζ < (4 − γ )/8 (44)

which proves THEOREM 2.
From THEOREM 2, a lower bound for η is obtained as

η > 4(1 − 2ζ ). (45)

Fig. 1 shows the obtained results in THEOREM 1 and
THEOREM 2. For ζ ≤ 3

8 the result is exact and for
3
8 < ζ < 1

2 , the curve is a lower bound for the optimum
asymptotic multiuser efficiency.

B. The Optimum Asymptotic Multiuser Efficiency
for i.i.d. Gaussian Spreading

In this section we investigate the optimum asymptotic
multiuser efficiency for a randomly spread CDMA when the
entries of H are i.i.d. Gaussian distributed.

Theorem 3: Let Hi, j ∼ N (0, 1
N ). The optimum asymp-

totic multiuser efficiency converges to 1 almost surely as K ,

N → ∞, if K
N log3 K is kept less than 1

2 .
Proof: By using (5) and LEMMA 4

P(EK ) ≤
K∑

j=1

(
K

j

)
2 j P(xT

j Rx j < 1), (46)
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Fig. 1. The optimum asymptotic multiuser efficiency lower bound
versus ζ = K

N log3 K .

where x j is an arbitrary vector with weight j . For sake of
simplicity, we write (46) as

P(EK ) ≤ 2K P(xT
1 Rx1 < 1)︸ ︷︷ ︸
�=G1

+
K∑

j=2

(
K

j

)
2 j P(xT

j Rx j < 1)

︸ ︷︷ ︸
�=G2

, (47)

where x1 is an arbitrary vector with weight 1. From
[2, eq. (21)], the term P(xT

1 Rx1 < 1) decays exponentially
in N . Since we assume ζ = K

N log3 K is fixed, it can be written
that

G1 = O

(
K e

−α K
log3 K

)
, (48)

where α is a finite positive real number.
The term G2 is calculated as follows. It can be shown that

conditioned on weight j

u�(x j ) ∼ N
(

0,
j

N

)
. (49)

Therefore, from (6), N
j (x

T
j Rx j ) has a chi-squared distribution

with N degrees of freedom. Therefore,

P(xT
j Rx j < 1) =

∫ N
j

0

1

2N/2�(N/2)
x

N
2 −1 exp (−x/2)dx .

(50)

A chi-squared distribution with N degrees of freedom is an
increasing function in [0, N − 2] for N > 2. Therefore,
since j ≥ 2, the term inside of the integration in (50) is an

increasing function. Thus,

P(xT
j Rx j < 1) ≤ N

j2N/2�(N/2)

(
N

j

) N
2 −1

exp

(
− N

2 j

)
.

(51)

Without loss of generality we assume that N is an even integer.
Based on Stirling’s formula a lower bound for �(N/2) is

�(N/2) = (N/2 − 1)! = (N/2)!
N/2

> 2
√
π/N

(
N

2e

)N/2

,

(52)

Therefore,

G2 ≤
K∑

j=2

1

2

√
N

π

(
K

j

)
2 j

(
e1− 1

j

j

) N
2

. (53)

Applying the bounds (16), we divide the summation as follows

G2 ≤
K∑

j=2

1

2

√
N

π
2

K
(

h
(

j
K

)
+ j

K

) (
e1− 1

j

j

) N
2

= S3 + S4, (54)

where

S3 =
j1∑

j=2

1

2

√
N

π
2

K
(

h
(

j
K

)
+ j

K

) (
e1− 1

j

j

) N
2

, (55)

S4 =
K∑

j= j1+1

1

2

√
N

π
2

K
(

h
(

j
K

)
+ j

K

) (
e1− 1

j

j

) N
2

, (56)

j1 =
⌊

K

(log2 K )u

⌋
, (57)

and u > 1 is a constant. Since e
1− 1

j

j is a decreasing function

of j , one has e
1− 1

j

j ≤
√

e
2 for j ≥ 2. Using the same argument

as that in the previous proofs, we can prove S3 → 0 by
bounding S3 as

S3 ≤ K

2(log2 K )u

√
N

π

× 2
uK log2 log2 K
(log2 K )u + K log2(2e)

(log2 K )u +(N/4) log2(e/4) → 0. (58)

One can also bound S4 as

S4 ≤
(

K − K

(log2 K )u
+ 1

)

×1

2

√
N

π
2K log2 3

(
e(log2 K )u

K

)N/2

=
(

K − K

(log2 K )u
+ 1

)
1

2

√
N

π

× 2K log2 3−(N/2) log2 K+(N/2)u log2 log2 K+(N/2) log2 e.

(59)

The above upper bound tends to 0 as K → ∞ if N goes to
infinity in such a way as to satisfy

ζ = K

N log3 K
<

1

2
. (60)
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Furthermore, it can be shown that
+∞∑
K=1

P(EK ) < ∞, (61)

which together with the application of the Borel-Cantelli
lemma proves that η converges to 1 almost surely if K → ∞
and ζ is kept less than 1

2 .
Tse and Verdú in [2] prove that the optimum asymptotic

multiuser efficiency of a CDMA system with general i.i.d.
entries converges to 1 when K → ∞ and K

N is kept finite.
However, in THEOREM 1, THEOREM 2 and THEOREM 3 we
prove that the loading factor, K

N , can grow logarithmically with
K for binary antipodal and Gaussian matrices. In fact, the
result in [2] can be obtained for random binary antipodal and
random Gaussian spreading when ζ → 0 as presented here.

III. RANDOM DETECTING MATRICES

In this section we study detecting matrices. They are closely
connected to optimum asymptotic multiuser efficiency. Detect-
ing matrices originate from the coin weighing problem in
mathematics [5], [6]. Let S be a subset of R. For a given
data set S such that x1, x2 ∈ SK , an N × K matrix H is
called detecting if and only if

H x1 = H x2 ⇒ x1 = x2, (62)

where x1 and x2 are K × 1 vectors. Another representation
form of (62) is

H x = 0 ⇒ x = 0, (63)

where x ∈ {SK − SK
}

in which{
SK − SK

}
=
{

x1 − x2|x1, x2 ∈ SK
}
. (64)

One can write (63) as

Null(H)
⋂{

SK − SK
}

= {0}, (65)

where Null(H) is the null space of H . For any binary input
S = {a, b}, a = b, a matrix H is detecting if and only if

Null(H)
⋂

{±(a − b), 0}K = {0}. (66)

Note that this is equivalent to

Null(H)
⋂

{±1, 0}K = {0}. (67)

From (3) and (67), it can be observed that there is a
connection between η and the concept of detecting matrices.
In fact if in a CDMA system the spreading matrix, H , is
not detecting then there is an error vector x = 0 such
that xT Rx = 0. Therefore, if the spreading matrix is not
a detecting matrix then the optimum asymptotic multiuser
efficiency is equal to 0.

In [10], it is proven that

lim
K→∞

N0 log2 K

K
= 2, (68)

where N0 is the minimum possible of N such that an N × K
binary {0, 1} or binary antipodal {±1} detecting matrix exists
for any binary input [11]. Therefore, it is concluded that

the optimum asymptotic multiuser efficiency is equal to 0
when K → ∞ and ζ = K

N log3 K is kept greater than log2 3
2 .

This result can be considered as a supplementary result to
THEOREM 1 and THEOREM 2. Note that there is no result
for the optimum asymptotic multiuser efficiency of a random
binary antipodal spread CDMA in ζ ∈

(
1
2 ,

log2 3
2

)
so far.

From (3) and (67) it is also observed that if the optimum
asymptotic multiuser efficiency is greater than 0 then the
spreading matrix is a detecting matrix. Therefore, from Fig. 1
it can be concluded that a binary antipodal random matrix is
detecting if K → ∞ and ζ = K

N log3 K is kept less than 1
2 . This

was also proven by Erdös and Rényi in 1963 [7]. However,
the converse statement might not be true. This means that a
spreading matrix can be detecting but η might be vanishing
in the large system limit. Therefore, being detecting cannot
be considered isomorphic to non-vanishing η. However, it is
beneficial to know under which condition a spreading matrix
is detecting. In the next theorem we generalize the result by
Erdős and Rényi for an i.i.d. random matrix whose elements
are chosen randomly from a finite set.

Theorem 4: Let  = {d1, d2, · · · dm} be a symmetric finite
set and ψ a zero mean symmetric non-degenerate probability
distribution on . An N × K matrix H whose elements are
i.i.d. with distribution ψ is a detecting matrix for any binary
input set S ∈ {a, b}, a = b, if K , N → ∞ and ζ = K

N log3 K is

kept less than rank()
2 , where rank() denotes the dimension

of  as a set of vectors over the field of rational numbers Q,
i.e., the maximum size of a subset of  such that no nontrivial
rational linear combination of which vanishes.

Proof: Suppose that DK is the event that H is a detecting
matrix. From (67), H is not a detecting matrix if there
is at least one x ∈ {±1, 0}K \ {0} such that H x = 0.
By using the union bound, a lower bound for P(DK ) is
obtained as

P(DK ) = 1 − P(D̄K ) ≥ 1 −
∑

x∈{±1,0}K \{0}
P(H x = 0), (69)

where D̄K is the complement of DK . From LEMMA 4,
P(H x = 0) is equal for all x ∈ {±1, 0}K with the same
weight. Therefore, (69) can be written as

P(DK ) ≥ 1 −
K∑

j=1

(
K

j

)
2 j P(H x j = 0). (70)

where x j is a vector with weight j . Entries of H are i.i.d.
Therefore, P(H x j = 0) in (70) can be written as

P(H x j = 0) =
(

P

(
K∑

i=1

Hri x j (i) = 0

))N

, (71)

where r ∈ {1, 2, · · · , N}. Hence,

P(DK ) ≥ 1 −
K∑

j=1

(
K

j

)
2 j

(
P

(
K∑

i=1

Hri x j (i) = 0

))N

. (72)
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Eq. (72) can be simplified more as

P(DK ) ≥ 1 − 2K (P(Hr1 = 0))K

−
K∑

j=2

(
K

j

)
2 j

(
P

(
K∑

i=1

Hri x j (i) = 0

))N

. (73)

Then, based on [12, Lemma 3]

P

(
K∑

i=1

Hri x j (i) = 0

)
= O

(
j− rank()

2

)
. (74)

Therefore,

P(DK ) ≥ 1 − 2K (P(Hr1 = 0))K

−
K∑

j=2

(
K

j

)
2 j O

(
j− Nrank()

2

)
. (75)

We divide the range of summation as

P(DK ) ≥ 1 − S5 − S6 − S7, (76)

where

S5 = 2K (P(Hr1 = 0))K , (77)

S6 =
j1∑

j=2

(
K

j

)
2 j O

(
j− Nrank()

2

)
, (78)

S7 =
K∑

j= j1+1

(
K

j

)
2 j O

(
j− Nrank()

2

)
, (79)

j1 =
⌊

K

(log2 K )u

⌋
, (80)

and u > 1 is a constant.
Since the pdf of the elements of H is a non-degenerate

pdf, P(Hr1 = 0) is less than 1. Thus, S5 tends to zero when
K → +∞. Next we will show that S6 and S7 tend to 0 as K ,
N → ∞ while ζ is kept less than rank()

2 .
We first show that S6 → 0 holds. Using (22), one can

bound S6 as

S6 ≤
j1∑

j=2

2
K
(

h
(

j
K

)
+ j

K

)
O
(

j− Nrank()
2

)

≤ cK(
log2 K

)u 2
uK log2 log2 K
(log2 K )u + K log2(2e)

(log2 K )u − Nrank()
2 , (81)

where c is a finite constant. The dominant term in the exponent
is − Nrank()

2 , which tends to −∞ as K , N → ∞. This proves
that S6 → 0 holds.

We next show that S7 also tends to 0 provided that
ζ < rank()

2 . Since the function h(t)+ t takes its maximum at
t = 2/3, one has

S7 ≤
K∑

j= j1+1

2
K
(

h
(

j
K

)
+ j

K

)
O
(

j− Nrank()
2

)

≤ ć

(
K − K(

log2 K
)u − 1

)

× 2K log2 3− Nrank()
2 (log2 K−u log2 log2 K), (82)

where ć is a finite constant. The right-hand side vanishes in
the limit K → ∞ provided that N goes to infinity in such a
way as to satisfy

ζ = K

N log3 K
<

rank()

2
. (83)

This proves that S7 → 0 holds when ζ < rank()
2 .

One can easily apply the Borel-Cantelli lemma and conclude
that a matrix H fulfilling the conditions in THEOREM 4 is
detecting almost surely.

As an example, if Hm,n ∈
{
± 1√

2N
± j√

2N

}
, where j =√−1, (83) is written as ζ < 1. THEOREM 4 is a generalized

form of the theorem presented in [7]. Note that THEOREM 4
only shows that a spreading matrix is a detecting matrix if
ζ < rank()

2 . However, as aforementioned the optimum asymp-
totic multiuser efficiency may vanish for a detecting matrix
in the large system limit. For the matrix whose elements are
chosen randomly from a finite set as defined in THEOREM 4,
the optimum asymptotic multiuser efficiency is not known
when the loading factor grows logarithmically with K . How-
ever, one can consider the condition ζ < rank()

2 as a necessary
condition to have η → 1.

IV. CONCLUSION

We derived a bound for the optimum asymptotic multiuser
efficiency of a randomly spread CDMA with binary antipodal
and Gaussian spreading. BPSK input signals were considered.
In fact, we obtained a condition such that the performances
of the optimum detector in binary antipodal and Gaussian
randomly spread CDMA systems are close to the single user
performance at high SNR when K and N → ∞ and even K

N
grows logarithmically with K . The connection between detect-
ing matrices and the optimum asymptotic multiuser efficiency
was also investigated. It was proven that for any binary
input, an N × K random matrix whose entries are chosen
randomly from a finite set, , with a symmetric pdf is a
detecting matrix if K and N → ∞ and K

N log3 K is kept less

than rank()
2 .

APPENDIX A

LEMMA 3 is proven as follows:
Proof: Assume that xm is a deterministic vector with

weight m and each element of the matrix H has a symmetric
pdf ρ(·). To prove the lemma it is enough to show that the pdf
of xT

m Rxm only depends on m. Since the elements of H are
i.i.d., it is concluded that u�(xm) defined in (6) for � = 1 · · · N
are independent and have the same pdf. Therefore, from (6) it
is enough to show that the pdf of u�(xm) only depends on m.
From the definition, u�(xm) = ∑K

n=1 H�,nxm(n). This means
that u�(xm) is equal to a linear combination of m independent
random variables. Furthermore, since ρ(·) is symmetric, the
pdf of H�,nxm(n) is equal to the pdf of H�,n for xm(n) ∈ {±1}.
Therefore, it is concluded that the pdf of u�(xm) is equal to

ρ(H�,i1) ∗ ρ(H�,i2) ∗ · · · ∗ ρ(H�,im ), (84)

where ∗ is the convolution operator and {i1, · · · , im} are the
indices of those elements of x which are not zero. From (84)



6642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 12, DECEMBER 2015

it is observed that the pdf of u�(xm) only depends on the
weight m and this proves the lemma.

APPENDIX B

From (14),

p( j + 1)

p( j)
= 2 j + 1

2 j + 2
, (85)

which implies that p( j+1)
p( j ) < 1 for j ≥ 1. Therefore, the

function p( j) is a decreasing function and

p( j) ≤ p(1) = 1

2
⇒ 1 − p( j) ≥ 1

2
, (86)

and therefore


N(1 − p( j))� ≥
⌊

N

2

⌋
. (87)

APPENDIX C

Let r ∈ {1, · · · ,m}. By using

1 =
m∑

n=0

(
m

n

)
qn(1 − q)m−n ≥

(
m

r

)
qr (1 − q)m−r , (88)

and letting q = r
m , it is obtained that(

m

r

)
2−mh( r

m ) ≤ 1. (89)

Thus, (16) is proven.

APPENDIX D

Based on the main theorem in [13] on Stirling’s formula,
we can write √

2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n . (90)

By using the bounds (90), we obtain

p( j) = (2 j)!
( j !)2 2−2 j ≤ e(2 j)2 j+ 1

2 e−2 j

2π j2 j+1e−2 j
2−2 j = e

π
√

2 j
. (91)
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