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Abstract—The performance guarantees in recovery of a sparse
vector in a compressed sensing scenario, besides the reconstruc-
tion technique, depends on the choice of the sensing matrix. The
so-called restricted isometry property (RIP) is one of the well-
used tools to determine and compare the performance of various
sensing matrices. It is a standard result that random (Gaussian)
matrices satisfy RIP with high probability. However, the design of
deterministic matrices that satisfy RIP has been a great challenge
for many years now. The common design technique is through
the coherence value (maximum modulus correlation between the
columns). In this paper, based on the Paley graphs, we introduce
deterministic matrices of size q+1

2
× q with q a prime power,

such that the corresponding Gram matrix is real-valued. We
show that the coherence of these matrices are less than twice the
Welch bound, which is a lower bound valid for general matrices.
It should be mentioned that the introduced matrix differs from
the equiangular tight frame (ETF) of size q−1

2
× q arising from

the Paley difference set.

I. INTRODUCTION

In general, there are infinitely many solutions to an under-
determined system of linear equations. However, it is nowa-
days well-known that under certain conditions, the sparsest
solution can be unique and one might be able to recover it
[1], [2]. Let xn×1 be an arbitrary vector from which we have
access to the linear samples ym×1 = Φm×n xn×1, where
m < n. If xn×1 is a k-sparse vector, meaning that xn×1
has at most k non-zero elements, and Φm×n is such that
Φx1 6= Φx2 for all k-sparse vectors x1 6= x2, then, ym×1
uniquely represents xn×1. This property of Φ is usually stated
with “spark”terminology: the spark of Φ is said to be larger
than l if any subset of l columns of Φ is linearly independent.
It is easy to see that unique representation of all k-sparse
vectors xn×1 via their linear samples ym×1 = Φx implies
a spark value larger than 2k for Φ, and vice versa [3]. It
is interesting to mention that the spark of any Vandermonde
matrix Vm×n =

[
αji
]
i,j

with distinct αis is m+ 1.
Although the spark value of Φ provides necessary and

sufficient conditions for unique representation of sparse vec-
tors x in terms of y = Φx, it does not guarantee the
existence of a computationally feasible method to recover x
from y. Furthermore, it does not establish any bound on the
representation error when x is approximately sparse, or when
the samples are contaminated by noise (y = Φ x + w, where
w is a noise vector). The latter drawback is the main reason
for avoiding Vandermonde matrices in compressed sensing
problems, though they have ideal spark values [4].

The common alternative to spark measure that overcomes
the previous shortcomings by imposing stronger constraints on
the sensing matrix Φ is the restricted isometry property.

Definition 1. The matrix Φm×n satisfies RIP of order k with
constant δk ∈ [0, 1) if for all k-sparse vectors xn×1 we have
that

1− δk ≤
‖Φx‖22
‖x‖22

≤ 1 + δk. (1)

A result in [5] shows that the best k-sparse approximation
of x can be stably recovered from y = Φ x+w by using `1-
minimization techniques, when Φ satisfies RIP(2k, δ2k) with
δ2k <

√
2 − 1. In addition, many families of random m × n

matrices (including Gaussian ensembles) satisfy this property
with high probability if m = O

(
k log(nk )

)
[6].

Unlike the spark measure for which there exists explicit
matrices that have ideally large spark values, there is currently
no deterministic matrix construction with RIP guarantees that
scale similar to random matrices. So far, designing matrices
with small “coherence”has been the dominant technique for
sensing matrix construction.

Definition 2. The coherence of Φm×n, denoted by µ(Φ), is
defined as

µ(Φ) = max
1≤i,j≤n
i 6=j

∣∣〈φi,φj〉∣∣
‖φi‖2 ‖φj‖2

, (2)

where φi stands for the ith column of Φ.

By using Gershgorin’s circle theorem one can show that if
Φ consists of unit-norm columns, then, it satisfies RIP(k, δk)
with δk ≤ (k − 1)µ(Φ) whenever k < 1 + 1

µ(Φ) . A trivial
consequence is that spark(Φ) ≥ 1 + 1

µ(Φ) .
One of the early deterministic designs is by DeVore [7].

The construction is based on polynomials over finite fields
and the result is a binary matrix with small coherence. Chirp-
based matrices were introduced in [8]; the elements of these
m×m2 matrices are complex numbers with magnitude 1√

m
.

These matrices are shown to satisfy a weaker form of RIP
known as statistical RIP [9]. The connection between error
correction codes and sensing matrices has been one of the
successful design tools. A bipolar design based on second
order Reed-Muller codes is introduced in [10]. In [11], using
BCH codes with extremely large minimum distances, bipolar



sensing matrices with small coherence values are constructed.
The generalization of binary BCH codes to p-ary codes are
applied to introduce complex sensing matrices [12]. The
Delsarte-Goethals frames based on Delsarte-Goethals codes
are proposed in [13]. The study of ReedSolomon codes to
generate complex sensing matrices is presented in [14]. As
shown in [15], algebraic curves can be exploited in a simi-
lar fashion as in algebraic codes to design binary matrices.
Employing the regular structures in finite geometry has been
another resource in designing matrices with small coherence
[16]. Besides coding techniques, certain submatrices of some
unitary matrices such as Fourier matrix are also found to have
small coherence values [17]. Instead of strict designs that lead
to matrices with small coherence values, one might think of
applying numerical minimization to achieve optimal coherence
values. One of the advantages of this computationally intensive
minimization is the flexibility in the choice of m (number
of rows in the sensing matrix) [18]. Note that the following
theorem, known as Welch bound, establishes a lower-bound
for coherence.

Theorem 1 (Welch bound[19]). The coherence of any
[complex-valued] matrix Φm×n with n ≥ m is lower-bounded
by

µ(Φ) ≥
√

n−m
m(n− 1)

. (3)

A matrix that has unit-norm columns and achieves the
Welch lower-bound of (3), is referred to as an equiangular
tight frame (ETF). ETFs are optimal in the sense of coherence.
Unfortunately, they do not exist for all pairs of (m,n), and
even the known examples are very limited. A consequence
of the Welch bound is that µ(Φ) ≥ O( 1√

m
) for n � m.

Thus, according to coherence-based guarantees we shall have
that m ≥ O(k2), which shows a significant increase in the
number of samples m compared to RIP-based guarantees
of random matrices. This effect is usually attributed to the
shortcomings of coherence-based guarantees. However, a new
ETF construction in [20] presents a matrix with optimal
coherence value whose spark-based (strongest guarantee) and
coherence-based guarantees coincide. The only known matrix
construction that breaks the m ≥ O(k2) barrier is due to
Bourgain et al. [21] with m = O(k2−ε), where ε ≈ 10−24

[22].
In this paper, we construct sensing matrices whose Grami-

ans consist only of non-negative real numbers and achieve
coherence values less than twice the Welch lower-bound. The
matrices are such that the corresponding Gramians coincide
with the adjacency matrix of some Paley graphs except for
the main diagonal. We should note that our construction is not
the first link between graph theory and compressed sensing:
[23] introduces a design based on extractor graphs and some
applications of expander graphs are discussed in [24] and
[25]. A recent construction based on LDPC codes (related
to some bipartite graphs) in [26] is shown to exhibit optimal
scaling properties using the null-space property guarantee with
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Fig. 1. Paley graph of order q = 9. The elements of F9 are represented by
{0, 1, 2, a, b, c, α, β, γ}.

high probability. Our construction in this paper, unlike the
mentioned graph-based designs, leads to a small coherence
value, which is the strongest available type of guarantee.

II. PALEY GRAPHS

Paley graphs are regular dense graphs associated with
quadratic relations in certain finite fields. There are two main
distinguishing properties for these graphs:
• they are extremely symmetric, which makes them ideal

for mathematical analysis, and
• they are quasi-random, in the sense that they share many

properties with random Erdós-Rényi graphs.
Let q be a prime power with residue 1 modulo 4 (q = 4a+1

for some integer a) and let Fq stand for the finite field of
size q. If q is a prime, Fq is simply the integers modulo q.
The Paley graph of order q, which we denote by Pq , consists
of q vertices, which we will denote by V1, V2, . . . , Vq . The
edges of the graph are formed by connecting Vi to Vj if and
only if i 6= j and i − j has a valid square-root in Fq . The
condition q = 4a + 1 implies the existence of α ∈ Fq such
that α2 = −1. Thus, if i − j has a square-root, j − i shall
also have one. This confirms that the edges of the Paley graph
are well-defined; i.e., Vi is connected to Vj if and only if Vj
is connected to Vi. Therefore, the adjacency matrix of Pq ,
denoted by A(Pq) = [ai,j ]q×q is given by

ai,j =

 1 i 6= j & ∃z ∈ Fq, i−j
Fq
= z2,

0 otherwise.
(4)

For illustration, we have depicted the Paley graph of order
q = 9 in Figure 1.

As there are q−1
2 non-zero squares in Fq , each vertex of

the graph is connected to exactly q−1
2 vertices. It is also

straightforward to see that the graph obtained by shifting the
index of vertices is isomorphic to Pq . Hence, the Paley graph
enjoys many authomorphisms, which describe its symmetries.
In particular, the Paley graphs are members of a larger family
known as strongly regular graphs (srg). An srg(n, d, nλ, nµ) is
a d-regular graph on n vertices, such that each pair of adjacent



vertices have nλ commons neighbors and each pair of non-
adjacent vertices have nµ common neighbors. The Paley graph
Pq is an srg(q, q−12 , q−54 , q−14 ) graph. Thus, the set of eigen-
values of A(Pq) has only 3 distinct values listed as [27]
• λ1 = q−1

2 with multiplicity 1,
• λ2 =

−1+√q
2 with multiplicity q−1

2 , and
• λ3 =

−1−√q
2 with multiplicity q−1

2 .
In fact, the multiplicity of the least eigne-value is a key to

our sensing matrix construction in this paper.

III. SENSING MATRIX CONSTRUCTION

Our design is based on the adjacency matrix of Paley graphs.
Let q be a prime power of the form q = 4a+1, and let A(Pq)
be the adjacency matrix of the corresponding Paley graph.
Since A(Pq) is real-valued and symmetric, it has an eigen-
decomposition of the form

A(Pq) = Uq×q Dq×q U−1q×q, (5)

where Uq×q is a unitary matrix whose columns are eigen-
vectors of A(Pq), and Dq×q is a diagonal matrix that has the
eigen-values on its diagonal.

Construction 1. Let u1 be the unit-norm eigen-vector of
the Paley adjacency matrix A(Pq) associated with its largest
eigen-value λ1 = q−1

2 , and let u2, . . . ,u q+1
2

be an orthonor-
mal set of eigen-vectors of A(Pq) corresponding to the eigen-
value λ2 =

−1+√q
2 (second largest eigen-value). We define

the sensing matrix by

Φ( q+1
2

)
×q = Λ( q+1

2

)
×
(
q+1
2

) [u1 u2 . . . u q+1
2

]H
, (6)

where the diagonal matrix Λ is

Λ( q+1
2

)
×
(
q+1
2

) = diag
(√

1−λ1

λ3
,
√

1−λ2

λ3
, . . . ,

√
1−λ2

λ3︸ ︷︷ ︸
q−1
2 times

)
. (7)

(note that λ3 =
−1−√q

2 < 0; hence, 1− λ1

λ3
, 1− λ2

λ3
> 0)

Theorem 2. For the matrix Φ( q+1
2

)
×q of Construction 1 we

have that
(i) the Gram matrix ΦHΦ is non-negative-valued,

(ii) the columns of Φ have unit norm,
(iii) the coherence of Φ is µ(Φ) = 2

1+
√
q , and

(iv) Φ satisfies the RIP of order k <
3+
√
q

2 with isometry
constant δk ≤ 2(k−1)

1+
√
q .

Proof. Let us further define u q+3
2
, . . . ,uq to be an orthonormal

set of eigen-vectors of A(Pq) corresponding to the least eigen-
value λ3 =

−1−√q
2 . To proceed with the analysis, we introduce

an auxiliary matrix Φ̃q×q , which is an extension of Φ( q+1
2

)
×q

to a square matrix by adding zeros:

Φ̃q×q =

[
Φ
0

]
q×q

=

[
Λ( q+1

2

)
×
(
q+1
2

) 0

0 0

]
q×q

[u1 u2 . . . uq]
H
. (8)

It is not difficult to verify that ΦHΦ = Φ̃HΦ̃, as the added
zeros do not contribute in the Gram matrix. This enables us
to write that

ΦHΦ = [u1 u2 . . . uq]︸ ︷︷ ︸
U

[
Λ 0
0 0

]2
q×q

[u1 u2 . . . uq]
H

= U diag
(
1−λ1

λ3
, 1−λ2

λ3
, . . . , 1−λ2

λ3︸ ︷︷ ︸
q−1
2 times

, 0, . . . , 0︸ ︷︷ ︸
q−1
2 times

)
UH

= Udiag
(
1−λ1

λ3
, 1−λ2

λ3
, . . . , 1−λ2

λ3︸ ︷︷ ︸
q−1
2 times

, 1−λ3

λ3
, . . . , 1−λ3

λ3︸ ︷︷ ︸
q−1
2 times

)
UH

= U UH − 1
λ3

U diag
(
λ1, λ2, . . . , λ2︸ ︷︷ ︸

q−1
2 times

, λ3, . . . , λ3︸ ︷︷ ︸
q−1
2 times

)
UH

= Iq×q − 1
λ3
A(Pq), (9)

where we invoked eigen-decomposition of A(Pq) as in (5),
and the fact that U is a unitary matrix.

Since λ3 < 0 and A(Pq) is a binary matrix, it is trivial
to conclude (i) from (9). Furthermore, as there is no non-zero
element on the diagonal of A(Pq), (9) implies that the diagonal
elements of ΦHΦ are all one. Thus, the columns of Φ have
unit norm and (ii) holds.

For matrices with unit-norm columns, the coherence in
Definition 2 can be interpreted as the maximum modulus of the
off-diagonal elements in the Gram matrix. For the introduced
matrix Φ, this value coincides with the maximum element of
− 1
λ3
A(Pq) which is clearly − 1

λ3
= 2

1+
√
q . This confirms (iii).

The claim in (iv) is a standard result obtained from the
coherence bound using Gershgorin circle theorem: a matrix
with unit-norm columns and coherence value µ satisfies the
RIP of order k < 1+ 1

µ with isometry constant δk ≤ (k−1)µ
[7], [11].

Evaluating the Welch bound (3) for m = q+1
2 and n = q,

we arrive at µWelch = 1√
q+1

. This indicates that the coherence
value in Theorem 2-(iii) is less than twice the Welch lower-
bound, which is reasonable. Note that the Welch bound is
valid for arbitrary complex-valued matrices while the intro-
duced matrices are constrained to have non-negative-valued
Gramians. The main drawback of the proposed design is that
it does not provide flexibility in setting n

m (aspect ratio of the
sensing matrix), as it is almost fixed to 2.

IV. SIMULATIONS

In this section, we compare the performance of the new
graph-based matrices with real-valued Gaussian random matri-
ces and a design based on binary BCH codes [11]. The Gaus-
sian ensembles are standard sensing matrices in the theory of
compressed sensing and their performance in sparse vector
recovery is generally regarded as ideal (optimal scaling). We
also include BCH-based matrices as their Gramian is real-
valued; however, the Gramian includes negative values. For
the purpose of simulations, we set q = 137 which is a prime
number and leads to a Paley graph of size 69 × 137. The
coherence of this graph is µPaley = 2

1+
√
69
≈ 0.215, which



guarantees RIP orders up to k ≤ 5; this bound is sufficient
to ensure stable recovery of only 2-sparse vectors. We use
the same size (i.e., 69× 137) for generating Gaussian random
matrices that are composed of zero-mean i.i.d. entries with
normal distribution and variance 1

69 . To take full advantage of
the randomness, we regenerate the Gaussian matrix for each
realization of the sparse input vector. For a BCH-based matrix,
we use the first 137 columns of a 63 × 256 bipolar matrix.
The coherence of this matrix is µBCH = 1

7 ≈ 0.143. The com-
parison in this fashion is somewhat unfair against the BCH-
based matrices as they are designed to take fewer samples
for a higher input dimension (n = 256) and by removing the
columns, the design remains unchanged. However, a better
comparison was not permitted by the limitation that a generic
BCH-based matrix is of size (2a − 1) × 2b for some integer
a, b pairs, where b = a+ 1 is not realizable.

In numerical results, we consider the recovery of sparse
vectors both with and without measurement noise. Also for
each realization of an n-dimensional k-sparse vector, we select
the support (location of non-zero values) uniformly at random
among all

(
n
k

)
possibilities. Then, the k non-zero values

are determined by k i.i.d. realizations of a standard normal
distribution. For the recovery of a k-sparse vector xn×1 from
compressed measurements ym×1 = Φm×nxn×1, we take
advantage of the LASSO technique formulated by

xn×1 = arg min
s
n×1

∥∥y −Φs
∥∥2
2
+ τ‖s‖1,

where τ is optimized to yield the best average performance for
each set of (m,n, k). The optimization over τ is performed by
finding its optimal value for a number of known input vectors
with the same sparsity and energy levels (oracle estimator)
and using the average τ values for unknown inputs under the
same sparsity and energy constraints.

Figure 2 shows the percentage of perfect recovery
(SNRrec ≥ 100dB) when different sparsity orders k are
considered. The percentages are evaluated based on 4000 trials
for each matrix and each value of k. The results confirm
superior performance of the Paley matrix compared to the
other two. According to the curves, the samples from the Paley
matrix can be used to perfectly recover k-sparse vectors with
probability 1 for k ≤ 10 and probability 0.9 for k ≤ 20. Note
that for k = 20, the probability of perfect reconstruction for
Paley matrix is 90%, almost three times the probability for
BCH-based matrices.

To study the stability of recovery, we investigate the perfor-
mance under additive white Gaussian noise. For this purpose,
we fix the sparsity order to k = 20 and vary the noise level
(input SNR). For each of the matrix types, and each input
SNR value, we perform the sampling/reconstruction procedure
1000 times and evaluate the average SNR of the reconstructed
vectors. The results are depicted in Figure 3. While the three
curves are very close at low SNRs, they separate at high SNRs.
This implies that for a medium to high average quality in the
reconstruction, we can tolerate higher noise levels when using
the Paley matrix.
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Fig. 2. The recovery percentage (SNRrec ≥ 100dB) for different sparsity
values (k).
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Fig. 3. The SNR of the reconstructed signal for 20-sparse signals when the
compressed samples are accompanied with different noise powers.

V. CONCLUSION

In this paper, we introduced a technique to design q+1
2 × q

sensing matrices for prime powers q of the form 4a+ 1. The
design is based on the eigen-decomposition of the adjacency
matrix of Paley graphs and achieves coherence values no larger
than twice the universal lower-bound of Welch. Due to the
use of adjacency matrices, the Gramians of the constructed
matrices are real-valued with no negative values. Numerical
simulations show that the proposed matrices perform similar
to and sometimes better than Gaussian random matrices of the
same size when LASSO is employed. For instance, the range
of sparsity orders up to which the recovery with probability
1 is provided is almost the same as the bounds for random
matrices, which is considerably larger than the coherence
bound. Furthermore, the recovery performance in the noisy
setup confirms stability of the compressed samples against
additive noise.
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