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Abstract—In this paper, we propose an Adaptive Singular
Value Thresholding (ASVT) for low rank recovery under affine
constraints. Unlike previous iterative methods that the threshold
level is independent of the iteration number, in our proposed
method, the threshold in adaptively decreases during iterations.
The simulation results reveal that we get better performance with
this thresholding strategy.

I. INTRODUCTION

Finding a minimum rank matrix subject to affine constraints
is the heart of many engineering applications such as minimal
realization theory [1], minimum order controller design [2]–
[4], collaborative filtering [5], and machine learning [6]–[8].
This problem is usually known as Affine Rank Minimization
(ARM). Mathematically speaking, we want to solve the fol-
lowing minimization problem:

min
X

rank(X),

s.t. : A(X) = b,
(1)

where X ∈ Rn1×n2 is the unknown matrix, A : Rn1×n2 →
Rm denotes the linear mapping, and b is the measurement
vector. The affine constraint A(X) = b can be simplified as

Avec(X) = v

where A ∈ Rm×n1n2 is the matrix representation of A and
vec(.) is the standard vectorization operator.

Since rank is the number of non-zero Singular Values (SVs),
the minimization problem (1) is the same as

min
X
‖σ(X)‖0,

s.t. : A(X) = b,
(2)

where (σ)(X) is the vector of SVs of X.
An important special case of ARM problem introduced in

(1) is the matrix completion problem:

min
X

rank(X),

s.t. : [X]i,j = [X∗]i,j , ∀(i, j) ∈ Ω,
(3)

where X is the unknown matrix, [X]i,j is the element of matrix
X at the intersection of i-th row and j-th column, and X∗ is
the low rank matrix that we would like to recover but we
only know a small subset of all entries of X∗, that is, Ω ⊆
{1, 2, · · · , n1} × {1, 2, · · · , n2}.

There are about two main approaches to solve the ARM
problem or better saying approximate the non-convex mini-
mization problem (2).

In the first approach, the rank function is approximated by
the nuclear norm. The nuclear norm of a matrix is defined as
‖X‖∗ =

∑r
i=1 σi(X) where σi is the i-th largest SV of X.

Therefore, we can write the nuclear norm as ‖X‖∗ = ‖σ(X)‖1
and finally, the nuclear norm minimization will be equivalent
to an `1-norm minimization as follows [9], [10]:

min
X
‖σ(X)‖1,

s.t. : A(X) = b.
(4)

Above nuclear norm minimization can be efficiently solved
using some convex optimization techniques such as a semi-
definite program [11]. For the purpose of matrix completion,
a Singular Value Thresholding (SVT) algorithm is proposed
to solve the nuclear norm minimization [12]. It is an iterative
algorithm that for a fixed value of τ > 0 and positive step-sizes
{δk}, starts with Y0 = 0 and repeats





Xk = D(Yk−1, τ)

Yk = Yk−1 + δkA(X∗ −Xk)
(5)

until a stopping criterion is satisfied. D(., .) is called the
singular value shrinkage operator. For a matrix A ∈ Rn1×n2

with Singular Value Decomposition (SVD) of A = UΣVT ,
we have

D(A, τ) = Udiag({max(σi − τ, 0)}min(n1,n2)
i=1 )VT . (6)

In the second approach, the `0-norm used in the rank
function is approximated by families of smoothing `0-norm
functions [13]. For example, a class of Gaussian smoothing
functions are defined as:

fδ(x) = exp

(
− x2

2δ2

)
. (7)

As δ → 0, fδ(.) gives better approximation of the Kronecker
delta function. In this approach, the rank of X ∈ Rn1×n2 is
approximated as follows:

rank(X) ≈ min(n1, n2)−
min(n1,n2)∑

i=1

fδ
(
σi(X)

)
(8)

and the final optimization problem is solved using the Gradient
Projection (GP) algorithm [14].

In this paper, we consider the ARM problem (1) and propose
an adaptive singular value thresholding method. Here, the
threshold level, unlike the threshold level in the SVT algorithm
is not fixed.
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II. THE PROPOSED ALGORITHM

We aim to recover a low rank matrix under some linear
constraints. As stated in Section I, this problem is known as
ARM. It should be noted that we don’t know the rank of
the primary matrix. Since the low rank matrix has sparsity in
SV domain, we propose to threshold the SVs. But the main
difference between our algorithm and previous ones is that the
threshold level is adaptively changed during iterations. The
idea of adaptive thresholding is used in [15] for recovery of
the original signal from its random samples. As suggested in
[15], we choose threshold level of k-th iteration as follows:

τk = b exp(−ak), (9)

where a and b are two constants. The proposed algorithm is
as follows: 




Xk = T (Yk−1, τk)

Yk = Yk−1 + δkA∗(b−AXk)
(10)

where A∗(.) is the adjoint of A(.). For a matrix X ∈ Rn1×n2

with SVD X = UΣVT , T (X, τk) is defined as follows:

T (X, τk)
∆
= U

[
if σi,j < τk : 0, else: σi,j

]n1,n2

i=1,j=1
VT . (11)

We call our algorithm Adaptive Singular Value Threshold-
ing (ASVT) which is shown in Algorithm 1.

III. SIMULATION RESULTS

The numerical experiment results are presented in this
section. All simulations are done by MATLAB R2015a on
Intel(R) Core(TM) i7-5960X @ 3GHz with 32GB-RAM.

We consider matrix completion as a special case of linear
constraints. The random matrices are generated according to
the scheme proposed in [12]. An r-rank matrix X of size
n1 × n2 is generated as X = AB where A ∈ Rn1×r

and B ∈ Rr×n2 are sampled independently form a standard
Gaussian distribution (N (0, 1)). The measurements or the
subset of observed entries Ω is sampled uniformly at random
of size m. As [12], we choose constant step-sizes as δ = 1.

To evaluate the performance of the algorithms, we report
the relative error of the reconstruction defined as follows:

RE(X, X̂) =
‖X̂−X‖F
‖X‖F

(12)

where X and X̂ are original and reconstructed matrices,
respectively.

A. Comparison with the SVT Algorithm

We generate matrices of size n1 = n2 =
100, 300, 500, 1000, and, 2000 with different ranks and
different fraction of observations

(
m

n1n2

)
and provide a

comparison between our algorithm with the SVT algorithm
proposed in [12]. We have downloaded the SVT MATLAB
codes from http://svt.stanford.edu/code.html.

According to the results of Table I, our proposed method
has better performance in terms of relative error even with

Algorithm 1 Adaptive Singular Value Thresholding: ASVT
1: input:

2: Measurement vector: b ∈ Rm

3: Linear mapping: A
4: Maximum number of iterations: K

5: Positive step-sizes: {δk}Kk=1

6: Two constants for thresholding: a, b

7: Termination tolerance: ε

8: initialization:

9: k ← 1

10: e←∞
11: X0 ← 0

12: Y ← 0

13: while e > ε & k < K do

14: [U,Σ,V] = svd(Y)

15: τk = b exp(−ak)

16: Σ(Σ < τk) = 0

17: Xk = UΣVT

18: Y = Y + δkA∗(b−AXk)

19: e = ‖Xk −Xk−1‖F
20: k ← k + 1

21: end while

22: X̂← Xk−1

23: return X̂

a fewer number of iterations. For example, when the size of
the matrix is 3000 × 3000 and its rank is 100 and only 0.3
of its entries are observed, our algorithm recovers it after 29
iterations while the SVT algorithm does this after 65 iterations.
Moreover, the relative error of our algorithm and the SVT
algorithm is 9.29× 10−4 and 1.53× 10−3, respectively.

B. Effect of Parameters

In this Subsection, we investigate the effect of damping
factor in thresholding operator (α) and step size (δ). For this
simulation, we generate 300 × 300 random matrices of rank
10 where only 1/3 of their entries are observed. We test
the proposed method with different values of α and δ. The
simulation results are shown in Figs. 1 and 2. According to
the results of Figs. 1 and 2, the run time of the algorithm
decrease as α and δ increases.

C. Phase Transition Plot

To better show the performance of the proposed method,
we plot the phase transition between m

n1n2
and dr

m where dr =
r(n1 + n2 − r) is the degree of freedom.
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TABLE I
COMPARISON OF THE PROPOSED ALGORITHM AND THE SVT ALGORITHM.

ASVT SVT [12]

Size Rank m
n1n2

#iters RE #iters RE

500× 500

10 0.15 75 9.60e-4 200 5.02e-3
50 0.4 64 9.62e-4 200 4.38e-2

100 0.5 138 9.64e-4 200 3.28e-1

1000× 1000

10 0.15 38 9.22e-4 62 1.49e-3
50 0.4 29 9.21e-4 70 1.60e-3

100 0.5 37 9.88e-4 103 1.89e-3

1500× 1500

10 0.15 23 8.17e-4 49 1.28e-3
50 0.4 22 8.69e-4 53 1.32e-3

100 0.5 26 8.79e-4 68 1.51e-3

2000× 2000

10 0.1 49 9.24e-4 54 1.31e-3
50 0.3 27 8.05e-4 56 1.35e-3

100 0.4 28 9.98e-4 68 1.53e-3

2500× 2500

10 0.1 38 9.60e-4 47 1.65e-3
50 0.25 33 8.36e-4 56 1.37e-3

100 0.3 37 8.96e-4 77 1.61e-3

3000× 3000

10 0.05 29 9.29e-4 65 1.53e-3
50 0.25 29 9.33e-4 50 1.33e-3

100 0.3 32 8.37e-4 66 1.51e-3
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Fig. 1. Effect of damping factor α.

In this simulation, we generate random matrix M of size
80× 80. Each experiment is repeated 100 times and a matrix
is declared to be successfully recovered if the relative error
between the recovered matrix and the original one is less
than 10−3. The phase transition is charted in Fig. 3. The gray
color of each cell indicates the probability of success recovery
during simulations. For example, the white color indicates that
the proposed algorithm can successfully recover the original
matrix while the black indicates that it fails.
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Fig. 2. Effect of step size δ.
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Fig. 3. Phase transition plot between dr/m and m/(n1n2).

IV. CONCLUSION

In this paper, we proposed an adaptive singular value
thresholding for recovery of low rank matrices under affine
constraints. The word adaptive means that the threshold level
is adaptively changed during the iterations. Recently, the SVT
algorithm is proposed for the matrix completion which is
an important case of low rank matrix recovery under affine
constraints. We also compared our algorithm with the SVT
algorithm and the simulation results show that we can achieve
improvement with adaptive thresholding. We show that the
relative error of the proposed method is less than the relative
error of the SVT algorithm. Moreover, our algorithm does this
task in a fewer number of iterations.
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