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Abstract—In this paper, we propose an analytical approach to compute the probability of connectivity for one-dimensional ad hoc

networks. The proposed analysis gives the exact probability of connectivity for an arbitrary distribution of nodes, provided that nodes

are independently and identically distributed. We conduct separate analyses for two cases; in the first case, the number of nodes

varies by time under a stationary distribution and in the second case, there is a fixed (known) number of nodes in the network. Using

the approaches presented in this work, we are able to derive closed-form formulas for the probability of connectivity for some spatial

distributions, while for more complicated distributions, our approach leads to tractable numerical algorithms. As an example, we apply

our method to a special case (uniform distribution) and derive a closed-form formula for its probability of connectivity. Finally, we

confirm the validity of our analytical approach by simulation for several distributions and show higher accuracy and applicability of the

proposed approach compared with existing methods.

Index Terms—Ad hoc network, connectivity, spatial density, spatial distribution.
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1 INTRODUCTION

MOBILE ad hoc networks (MANETs) have attracted the
attention of many researchers in recent years due to

their numerous applications in different communication
scenarios. One of the desirable properties of a practical ad
hoc network is having a high probability of connectivity,
because connectivity affects the main performance mea-
sures of networks such as throughput and delay [1].
Besides, there are some problems (related to design of
multihop wireless networks) that depend upon computa-
tion of this probability, e.g., optimal power allocation to
satisfy a certain minimum probability of connectivity [2],
[3], [4], finding the minimum number of nodes needed to
ensure network connectedness with high probability (e.g.,
in sensor networks) [2], and design of efficient packet
routing algorithms in vehicular ad hoc networks (VANETs),
especially at intersections [5], [6], [7].

Connectivity of ad hoc networks was first studied in [8],
[9]. Up to now, there have been several efforts to compute
exact or approximate expressions for this probability.
Authors in [10], [11], [12], [13], [14] provided exact formulas
for probability of connectivity in some specific one-dimen-
sional (1D) networks. Authors in [10] derived exact
formulas for the case of n uniformly distributed nodes in
a 1D path. A correction on [10] along with another similar

model was verified in [11]. An exact expression for the
probability that these networks (with uniform distribution)
are composed of at most c clusters was given in [12], where
in the case of c ¼ 1 it converts to the probability of network
connectivity. Misra et al. [13] concerned the connectivity of
a 1D uniform circular network, i.e., when n nodes are
uniformly distributed on a circle. A simple closed-form
formula as an approximation for the probability of con-
nectivity for a network with n uniformly distributed nodes
was derived in [14]. Also there has been a lot of interest in
connectivity of 1D and 2D networks in asymptotic cases
[15], [16], [17], i.e., when the number of nodes goes to
infinity. Generally, in most networks studied so far, the
assumptions of uniform distribution and a fixed (known)
number of nodes have been applied.

The aforementioned scenarios are far from reality in
dynamic environments, i.e., when the number of nodes is
varying continually. In this case, in order to acquire the
probability of connectivity, first, one should find the steady-
state spatial distribution of nodes for the network scenario
and then compute the probability of connectivity corre-
sponding to each state of the spatial distribution. On the
other hand, uniform distribution considered in the litera-
ture [2], [3], [10], [11], [12], [13], [14], is not applicable
somewhere. In this regard, several mobility models have
been presented in the literature, such as Random Waypoint
[18], Gauss-Markov model [19], and Reference Point Group
[20] that lead to nonuniform spatial distributions. As an
example of where the uniform distribution assumption
fails, in VANETs, intuitively we expect to have more traffic
load in the last parts of streets (in the vicinity of crosses),
and middle parts are supposed to be less crowded since
vehicles move faster in these parts. In this case, uniform
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distribution along the street fails to model the practical
situation and more complex distributions should be
concerned. Some of the research works in the literature
are able to give the spatial distribution of vehicles in a
VANET. In this respect, in a new research work [21] we
have focused on VANETs in dense scenarios that the
vehicles affect each other. In that paper we have proposed a
new analytical mobility model capable of considering
interdependence among vehicles. The output of such a
mobility model is a spatial traffic distribution. Furthermore,
VANETs are examples of dynamic environments, in which
the number of nodes is varying with time.

Nevertheless, there have been some research works that
considered nonuniform distribution or variable number of
nodes. In [22], the authors studied the probability of
connectivity for a special VANET, and proposed an analysis
to compute a good approximation for the probability of
connectivity at that network. In their model, they assumed
nodes arrive in a highway and depart from it through
certain traffic entry points according to a Poisson process
and move with constant speed along their path, hence, the
number of nodes is variable and distribution is not uniform.
Authors in [23] proposed an analytical mobility model for
VANETs (with variable number of nodes) and derived
loose upper and lower bounds for the probability of
connectivity. The research work in [24] provided an
analysis to compute approximate probability of connectiv-
ity, where a fixed number of nodes are arbitrarily
distributed in a 1D network. Although this approximation
is of relatively high precision for dense networks (i.e., when
the number of nodes is large, hence, the probability of
connectivity is close to one), it doesn’t yield good approx-
imation for sparse networks in which the probability of
connectivity is small. To the best of our knowledge there is
still no analytical method to compute the exact probability
of connectivity for an arbitrary distribution of nodes in
either case of variable or the case of fixed number of nodes.

In this paper, we propose an analytical method to find
the exact probability of connectivity for any arbitrary spatial
distribution of nodes, provided that nodes are indepen-
dently and identically distributed (iid). Our proposal
includes two cases, i.e., variable and fixed number of
nodes. In the first case, we assume that the number of nodes
changes with time under a stationary distribution. As an
example, in a VANET scenario it is assumed that the arrival
rates of the vehicles, the driving habits of the drivers,
restrictive road conditions, etc., remain nearly constant for a
sufficiently long period of time, such that spatial distribu-
tion of the vehicles reaches steady state. Moreover, since at
a typical street in the VANET scenario the effective factors
on the mobility pattern (e.g., traffic signs, crosswalks, etc.)
are the same for all nodes, the iid assumption is justifiable.
Our approach gives integral form solutions that can be
simplified to closed-form formulas for some distributions,
whereas for more complicated distributions it provides
tractable numerical algorithms to find the probability of
connectivity. For the second case, i.e., fixed (known)
number of nodes, our proposed method is able to give
exact probability of connectivity for any arbitrary spatial
distribution. It is worth saying that our proposed approach
gives exact results for both dense and sparse situations.

In our approach, we present separate analyses for two
cases. For the first case where the number of nodes is
variable, we first analyze discrete 1D networks in which the
path is sectorized and each sector can be empty or occupied
by nodes according to a given probability. By increasing the
number of sectors to infinity (or equivalently shrinking the
size of the sectors to zero), an approach to compute the exact
probability of connectivity for continuous networks is
derived, which is then applied to a special case, namely
uniform distribution, giving a closed-form formula for its
probability of connectivity. For the second case where the
number of nodes is fixed, we conduct a separate analysis
directly for continuous networks. It is then shown through
numerical examples that our results match with simulation
and are compatible with existing methods. Furthermore, we
present some examples in order to show the importance of
exact computation of probability of connectivity in an
environment with variable number of nodes and a known
spatial density function. Moreover, it is shown that our
approach is much more accurate than the approximate
method presented in [24].

The paper is organized as follows: In Section 2, the
connectivity analysis of discrete networks with variable
number of nodes is proposed. Section 3 is devoted to
the connectivity analysis of continuous networks where the
number of nodes is variable. Closed-form formula for the
probability of connectivity in the case of uniform distribu-
tion is derived in Section 4. Section 5 provides connectivity
analysis of continuous networks with a fixed number of
nodes. In Section 6, we confirm our analysis by simulation
and present several numerical results to show the applic-
ability of our approach for different cases. Finally, the paper
is concluded in Section 7.

2 CONNECTIVITY OF DISCRETE NETWORKS IN THE

CASE OF A VARIABLE NUMBER OF NODES

In this section, we propose an analytical approach to
compute the probability of connectivity for discrete 1D
networks. A discrete 1D network is composed of M
subregions each of length L=M, constructing a path of
length L. We assume two more subregions; first, a fixed
wireless transmitter, called the source, placed in subregion
0 and second, a fixed wireless receiver in subregion M þ 1,
called the destination. A subregion is occupied if there is at
least one node in that subregion. Let rd denote the
transmission range normalized to the length of a subregion,
such that there is a radio link between any two consecutive
nodes if their corresponding subregions have a difference
less than rd. For example, nodes in the subregions
1; 2; . . . ; rd � 1 are always connected to the source, but if
these subregions are empty and there is a node in subregion
rd, then this node will be disconnected. A node is said to be
connected if there is a connected path between this node
and the source. Here, we are interested in connectivity of
the whole network, that is a connected path between the
source and the destination.

The discrete network is like centering the nodes on their
corresponding subregions. In our analysis, we use the
concept of connectivity of positions instead of connectivity
of nodes. A position (here, a subregion) is said to be
connected if its center is within the transmission range of a
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centeralized connected node. A connected position may be
either occupied or empty. In other words, a connected
subregion is a subregion that if we pose a new node in it,
this node becomes connected. Thus, connectivity of the
whole path is equivalent to the connectivity of subregion
M þ 1 (i.e., position of the destination).

Definition 1 (Spatial density function of a discrete

network). The probability that the jth subregion of a 1D
discrete network is occupied is denoted by fdðjÞ. fd is called
spatial density function of the discrete network.

Note that the source is in subregion 0, thus we always
have: fdð0Þ ¼ 1. Define

gðmÞ ¼4 fdðmÞ
Ymþrd�1

k¼mþ1

ð1� fdðkÞÞ; 0 � m �M � rd þ 1; ð1Þ

which denotes the probability that the subregion m is
occupied but its rd � 1 following subregions are empty.

In the equations throughout the paper, we indicate the
phrases “Disconnected,” “Connected,” “Occupied,” and
“Empty” by their abbreviations 0DC0, 0C0, 0O0, and 0E0,
respectively. The following lemma is the basis of our analysis:

Lemma 1. Let PCðmÞ denote the probability that subregion m is
connected to the source, then

PCðmÞ ¼ 1; m < rd;

PCðmÞ ¼ PCðm� 1Þ � PCðm� rdÞgðm� rdÞ; m � rd: ð2Þ

Proof. The first equation is clear from the definition of
transmission range. For the second equation

PDCðmÞ ¼4 P ðm is 0DC0Þ
¼ P ðm is 0DC0; m� 1 is 0DC0Þ
þ P ðm is 0DC0; m� 1 is 0C0Þ
¼ P ðm� 1 is 0DC0Þ þ P ðm� rd is 0C0;m� rd

is 0O0; m� rd þ 1; . . . ;m� 1 are 0E0Þ
¼ PDCðm� 1Þ þ PCðm� rdÞgðm� rdÞ
) PCðmÞ ¼ PCðm� 1Þ � PCðm� rdÞgðm� rdÞ;

where the last equality is due to PCðmÞ ¼ 1� PDCðmÞ. tu
Thus, for finding the probability of connectivity in a

discrete network, one can utilize the following two-step
approach:

Approach 1.

1. Compute gðmÞ for m ¼ 0; 1; . . . ;M � rd þ 1, from (1).
2. Set PCðmÞ ¼ 1 for m < rd and find PCðmÞ for m ¼

rd . . . ;M þ 1 using (2).

Clearly, the number of iterations is OðMÞ. Hence, the
method is well tractable.

3 CONNECTIVITY OF CONTINUOUS NETWORKS IN

THE CASE OF A VARIABLE NUMBER OF NODES

The 1D continuous network is a path of length L with a
fixed transmitter and a fixed receiver located in positions 0
and L, called the source and the destination. Denote by r

the transmission range due to which if jx� yj < r, then the

nodes in positions x and y are connected to each other; but,

if jx� yj � r and the interval ðx; yÞ is empty, there would be

no radio link between these nodes. A node is said to be

connected if there is a connected path between this node

and the source. Similar to the discrete case, a position is

connected if it is within the transmission range of a

connected node and the connectivity of the whole path is

equivalent to the connectivity of position L.

Definition 2 (Filling a network according to a spatial

density function dynamically). A continuous network is

said to be dynamically filled according to a spatial density

function, f , if each differential interval, ½x; xþ dxÞ, of the

network is occupied with probability fðxÞdx, independent of

the state of the other parts. In this case, the number of nodes is

variable and can be any nonnegative integer.

In the following, we construct a function, g, similar to the

previous section and state a similar lemma for the

continuous case, which is then used to derive integral form

formula for the probability of connectivity.
By taking the assumption into account that occupancy

state of a differential interval ½x; xþ dxÞ, is independent of

the state of the other intervals, the probability of emptiness

for a typical interval, ½x; xþ rÞ, is equal to the product of

probabilities that each differential interval in this region is

empty. In order to compute such a product, by taking

logarithm of both sides of the equality, the infinite product

is converted to integration of logarithms of probabilities

that the differential intervals are empty. Hence, if we define

gðxÞdx as the probability that ½x; xþ dxÞ is occupied but

½xþ dx; xþ rÞ is empty, then we have

lnðgðxÞdxÞ
¼ lnðP ð½x; xþ dxÞ is 0O0ÞP ð½xþ dx; xþ rÞ is 0E0ÞÞ
¼ lnðP ð½x; xþ dxÞ is 0O0ÞÞ
þ lnðP ð½xþ dx; xþ rÞ is 0E0ÞÞ

¼ lnðfðxÞdxÞ þ
Z xþr

y¼xþ
lnð1� fðyÞdyÞ

¼ lnðfðxÞdxÞ �
Z xþr

y¼xþ
fðyÞdy;

where in the last equation, we used the equality lnð1þ zÞ ¼ z,
for asymptotically small jzj. A fixed wireless node in the

middle of the path (e.g., in position x0) can be modeled by a

unit impulse, �ðx� x0Þ, in the spatial density function, f . We

have assumed that there is no fixed node in the middle of the

path (except for the source) and consequently there is no

singularity in the density function, f (except for position 0).

Hence, the above expression for gðxÞ can be simplified in the

form of the following equation:

gðxÞ ¼
fðxÞe�

R xþr

y¼xþ
fðyÞdy

; x > 0;

e
�
R r

y¼0þ
fðyÞdy

�ðxÞ; x ¼ 0:

8><
>: ð3Þ

The following lemma is the continuous version of

Lemma 1 in the previous section.
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Lemma 2. If PCðxÞ denote the probability that position x is

connected, then we have

PCðxÞ ¼ 1; x < r;

dPCðxÞ
dx

¼ PCðx� rÞg�ðx� rÞ; x � r;
ð4Þ

where g�ðxÞ ¼ �gðxÞ; 8x.

Proof. Continuous networks are limits of discrete networks

when the length of subregions tends to zero. The proof of

this lemma is similar to Lemma 1 (note the difference

between definition of spatial density functions and g

functions in the two cases). tu

The differential equation in (4) can be solved numerically.

The complexity of numerically solving (4) is proportional to

the complexity of integrating g. It can be simply carried out

by sectorizing the x-axis intoM subregions to form a discrete

network with fdðnÞ ¼ minð1;
R nL=M
z¼ðn�1ÞL=M fðzÞdzÞ; 1 � n �M

(which is equal to L
M fððn� 1

2Þ LMÞ for large M), and then

finding the probability of connectivity using Approach 1. It is

clear that the larger the number of subregions, the more

accurate is the answer. In brief:
Approach 2. In order to find the probability of con-

nectivity of a continuous network, divide the continuous

path into small subregions and use Approach 1.
However, finding a closed-form formula for this kind of

equations is not generally an easy job. In the following, we

derive an integral form solution for this system.
From elementary calculus we know that

PCðxÞ ¼ PCðr�Þ þ
Z x

y¼r�

dPCðyÞ
dy

dy; x � r: ð5Þ

From (4) and (5) we have

PCðxÞ ¼ 1þ
Z x

y¼r�
g�ðy� rÞPCðy� rÞdy

¼ 1þ
Z x�r

y¼0�
g�ðyÞPCðyÞdy; x � r:

ð6Þ

Let k ¼ x
r

� �
. By using (6) again and again, PCðxÞ can be

explicitly described in terms of g-function, as in the

following:

PCðxÞ ¼ 1þ
Z x�r

y1¼0�
g�ðy1ÞPCðy1Þdy1

¼ 1þ
Z x�r

y1¼0�
g�ðy1Þ 1þ

Z y1�r

y2¼0�
g�ðy2ÞPCðy2Þdy2

� �
dy1

¼ 1þ
Z x�r

y1¼0�
g�ðy1Þ

�
1þ

Z y1�r

y2¼0�
g�ðy2Þ

�
1þ � � ��

1þ
Z yk�1�r

yk¼0�
g�ðykÞPCðykÞdyk

�
� � �
�
dy2

�
dy1

¼ 1þ
Z x�r

y1¼0�
g�ðy1Þ

�
1þ

Z y1�r

y2¼0�
g�ðy2Þ

�
1þ � � ��

1þ
Z yk�1�r

yk¼0�
g�ðykÞdyk

�
� � �
�
dy2

�
dy1:

Note that in the last equality 0 � yk � x� kr ¼ x �
x
r

� �
r < r. Hence, according to (4), PCðykÞ ¼ 1. By reshaping

this equation, we obtain

PCðxÞ ¼ 1þ
Z x�r

y1¼0�
g�ðy1Þdy1

þ
Z x�r

y1¼0�
g�ðy1Þ

Z y1�r

y2¼0�
g�ðy2Þdy2dy1

..

.

þ
Z x�r

y1¼0�
g�ðy1Þ � � �

Z yk�1�r

yk¼0�
g�ðykÞdyk � � � dy1:

ð7Þ

For the sake of simplicity, define functions hiðxÞ;
0 � i � k, as follows:

h0ðxÞ ¼
4
uðxÞ;

hiðxÞ ¼4
Z x�r

y¼0�
hi�1ðyÞg�ðyÞdy; 1 � i � x

r

j k
;

ð8Þ

where uðxÞ is the unit step function with uð0Þ ¼ 1. Now, (7)

can be rewritten as

PCðxÞ ¼
Xxrb c
i¼0

hiðxÞ: ð9Þ

Hence, the probability of connectivity for continuous

networks can be found using the following approach. It
also leads to closed-form formulas for some special
distributions.

Approach 3.

1. Compute g�ðxÞ from (3) for x 2 ½0; L� r�.
2. Find functions hiðxÞ from (8).
3. Calculate PCðLÞ (the probability of network con-

nectivity), using (9).

In this approach, OðL=rÞ integrations should be com-
puted. For some special spatial density functions (such as
uniform distribution) these integrations can be solved
analytically to give closed-form formulas. However, in

general, there is no closed-form solution and the integrations
must be calculated numerically. In this case, Approach 2
would be more computationally efficient.

4 A SPECIAL CASE, UNIFORM DISTRIBUTION

As stated in the previous section, with the aid of Approach
3, closed-form formulas for probability of connectivity can
be found only for some special distributions. By a special

spatial distribution we mean density functions whose
corresponding g-functions have closed-form solutions
when integrated for many times. This is due to the fact

that PCðxÞ is computed by integrating the product of g with
its integrals (see (8) and (9)). Spatial distributions with
corresponding g-functions in the form of polynomials

(especially uniform g-function whose f-function is also
uniform), exponential functions, and sinusoids are some
examples for which the probability of connectivity has

closed-form solution. However, it is clear that f-functions
of these distributions may have complicated expressions.
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In this section, we find a closed-form formula for

probability of connectivity in networks with uniform spatial

density, i.e., fðxÞ ¼ f; 0 < x < L. Here again, the number of

nodes is variable. In order to find a closed-form formula for

the probability of connectivity using Approach 3, we should

compute the functions g�ðxÞ and hiðxÞ. From (3), we have

g�ðxÞ ¼ �fe�rfuðxÞ � e�rf�ðxÞ;

where �ðxÞ is the unit impulse function. For simplicity, let

g�ðxÞ ¼ g0uðxÞ � e�rf�ðxÞ;

g0 ¼4 �fe�rf :
ð10Þ

The functions hi can be computed from (8)

h0ðxÞ ¼ uðxÞ;

h1ðxÞ ¼
Z x�r

y¼0�
h0ðyÞg�ðyÞdy

¼
Z x�r

y¼0�
uðyÞ

�
g0uðyÞ � e�rf�ðyÞ

�
dy

¼
�
g0ðx� rÞ � e�rf

�
uðx� rÞ;

h2ðxÞ ¼
Z x�r

y¼0�
h1ðyÞg�ðyÞdy ¼

Z x�r

y¼0�

�
ðy� rÞg0

� e�rf
�
uðy� rÞ

�
g0uðyÞ � e�rf�ðyÞ

�
dy

¼
Z x�r

y¼r

�
ðy� rÞg0 � e�rf

�
uðy� rÞg0uðyÞdy

¼
Z x�2r

y0¼0

�
g2

0y
0 � g0e

�rf�uðy0Þdy0
¼
�
g2

0

2
ðx� 2rÞ2 � g0e

�rfðx� 2rÞ
�
uðx� 2rÞ:

In the same way for 1 � j � x
r

� �
:

hjðxÞ ¼
gj0
j!
ðx� jrÞj � g

j�1
0 e�rf

ðj� 1Þ! ðx� jrÞ
j�1

" #
uðx� jrÞ; ð11Þ

where g0 is given by (10). Finally, exact expression for the

probability of network connectivity can be obtained from (9)

PCðLÞ ¼ 1þ
XLrb c
j¼1

ð�fe�rfÞj

j!
ðL� jrÞj�1 ðL� jrÞ þ j

f

� �
: ð12Þ

It is easy to check that PCðxÞ given by (12) satisfies the

equations in (4).

5 CONNECTIVITY IN THE CASE OF A FIXED NUMBER

OF NODES

In this section, we propose expressions and algorithms for

computing the probability of connectivity for 1D networks

with a fixed number of nodes. The idea is similar to the

previous case where the number of nodes was variable.

Here, we only study continuous networks.

Definition 3 (Distributing nn nodes in the network

directly). n nodes are said to be directly distributed in a 1D

network according to a probability density function, fp, if each

node is posed on the path according to fp independent of the

positions of other nodes, that is each node sits in the interval
½x; xþ dxÞ with probability fpðxÞdx.

For direct distribution, one should first place the first node
on the path according to the given probability density
function, then do the same for the second, third, etc.,
regardless of the positions of the previous nodes. This
definition may look trivial at the first glance, but a meticulous
reader will point out its contrast with the following definition
(note the difference between probability density function
in Definition 3 and spatial density function in Definition 4).

Definition 4 (Distributing nn nodes in the network

indirectly). Indirect distribution of n nodes in a network
according to a spatial density function, f , is filling the network

according to f dynamically (see Definition 2), subject to
having exactly n nodes in the network.

Given a spatial density function, f , when we want to
distribute n nodes in our 1D network according to f

indirectly, we can first assume an empty network and
dynamically fill it according to f (see Definition 2). At this
point there would be some nodes in the network (we may
have zero or infinitely many nodes). If the network has
exactly n nodes, then the network is filled with n nodes
indirectly. But if the number of nodes is more or less than n,
we should empty the network and fill it again. We continue
refilling the network according to f again and again until
reaching a network with exactlynnodes. This network is said
to be indirectly filled with n nodes according to the spatial
density function, f . Let Pnodesðx; nÞ denote the probability
that there are exactly n nodes in ð0; xÞ when the network is
filled according to a spatial density function dynamically.

Most of the papers on network connectivity assume that
nodes are directly distributed in the network. However, in
order to use the ideas of the previous sections in our future
analysis, we distribute nodes in the network indirectly. The
following lemma expresses the relation between these two
ways of filling a network:

Lemma 3. If f is a spatial density function and fp is a probability

density function that is constructed from f by normalization,
i.e.:

fpðxÞ ¼
fðxÞ
F ðLÞ ; ð13Þ

where F ðxÞ ¼4
R x
y¼0þ fðyÞdy; then, the direct distribution of

n nodes according to fp is equivalent to the indirect
distribution of n nodes according to f .

Proof. Denote by pdirectnðx1; . . . ; xnÞ and pindirectnðx1; . . . ; xnÞ
the pdfs of direct and indirect distributions of n nodes
according to fp and f , respectively. Then

pdirectnðx1; . . . ; xnÞdx1 . . . dxn

¼4 P
½x1; x1 þ dxÞ; . . . ; ½xn; xn þ dxÞ are
0O0 in direct distrib: of n nodes

� 	
¼ n!fpðx1Þ � � � fpðxnÞdx1 � � � dxn

¼ n!

F ðLÞn fðx1Þ � � � fðxnÞdx1 � � � dxn;

ð14Þ
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where n! is due to permutation (note that the nodes are
indistinguishable). On the other hand

pindirectnðx1; . . . ; xnÞdx1 � � � dxn

¼4 P
½x1; x1 þ dxÞ; . . . ; ½xn; xn þ dxÞ are
0O0 in indirect distrib: of n nodes

� 	

¼ P
½x1; x1 þ dxÞ; . . . ; ½xn; xn þ dxÞ
are 0O0 in dynamically filled networks






n nodes

 !

¼
P

½x1; x1 þ dxÞ; . . . ; ½xn; xn þ dxÞ are 0O0 when the

network is filled dynamically; and exactly n nodes

� 	
P ðexactly n nodes in the networkÞ

¼ fðx1Þ � � � fðxnÞP ðother parts are emptyÞdx1 � � � dxn
PnodesðL;nÞ

¼ P ðentire network is 0E0Þ
PnodesðL; nÞ

fðx1Þ � � � fðxnÞdx1 � � � dxn;

ð15Þ

where the last equality is due to

P ðentire network is 0E0Þ
P ðother parts are 0E0Þ ¼

Yn
i¼1

ð1� fðxiÞdxiÞ ¼ 1�OðxÞ:

From (14) and (15), we have

pindirectnðx1; . . . ; xnÞdx1 � � � dxn
pdirectnðx1; . . . ; xnÞdx1 � � � dxn

¼ F ðLÞ
nP ðentire network is 0E0Þ

n!PnodesðL; nÞ
¼ const: ðindependent of xi

0sÞ:

ð16Þ

Since both Pdirectn and Pindirectn are probability density
functions and their integrals are equal to unity, this
constant ratio is one and the two pdfs are equal. tu

Corollary 1. Since the constant in (16) is equal to one,
PnodesðL; nÞ is

PnodesðL; nÞ ¼
F ðLÞnP ðentire network is 0E0Þ

n!

¼ F ðLÞ
ne
�
R L

y¼0þ
fðyÞdy

n!
¼ F ðLÞ

ne�F ðLÞ

n!
:

In a similar way,

Pnodesðx; nÞ ¼
F ðxÞne�F ðxÞ

n!
; 0 < x � L: ð17Þ

In the following, we study the probability of connectivity
for continuous networks where n nodes are distributed in
the network indirectly. Lemma 3 assures us that for any
direct distribution, there is an equivalent indirect distribu-
tion whose density function is obtained by scaling fpðxÞ
with an arbitrary scaling factor. We use the following
notation in the remaining of this section:

PCðxjnÞ ¼ P
�
x is 0C0 s:t: exactly n nodes in ð0; xÞ

�
;

PCðx; nÞ ¼ P x is 0C0 and exactly n nodes in ð0; xÞð Þ;
PDCðx; nÞ ¼ P x is 0DC0 and exactly n nodes in ð0; xÞð Þ:

In order to find PCðxjnÞ, we first compute PDCðx; nÞ and
then calculate PCðxjnÞ from

PCðxjnÞ ¼
PCðx; nÞ
Pnodesðx; nÞ

¼ Pnodesðx; nÞ � PDCðx; nÞ
Pnodesðx; nÞ

¼ 1� PDCðx; nÞ
Pnodesðx; nÞ

:

ð18Þ

The following lemma enables us to compute PDCðx; nÞ:
Lemma 4. PDCðx; nÞ satisfies the following equations:

PDCðx; nÞ ¼ 0; x < r; n � 0;

PDCðx; 0Þ ¼ e�F ðxÞuðx� rÞ; 8x;
dPDCðx; nÞ

dx
¼ �PDCðx; nÞfðxÞ

þ PDCðx; n� 1ÞfðxÞ
þ Pnodesðx� r; n� 1Þgðx� rÞ
� PDCðx� r; n� 1Þgðx� rÞ;

8x � r; n � 1:

ð19Þ

Proof. The first equation is clear from the definition of
transmission range. For the second equation note that
e�F ðxÞ is equal to the probability of emptiness of ð0; xÞ.
The proof of the third equality is similar to the proof of
Lemma 2.

PDCðx; nÞ ¼4 P
�
x is 0DC0; n nodes in ð0; xÞ

�
¼ P

�
x is 0DC0; x� dx is 0DC0; n nodes in ð0; xÞ

�
þ P

�
x is 0DC0; x� dx is 0C0; n nodes in ð0; xÞ

�
¼ P

�
x� dx is 0DC0; n nodes in ð0; x� dxÞ;
½x� dx; xÞ is 0E0

�
þ P

�
x� dx is 0DC0;

n� 1 nodes in ð0; x� dxÞ;½x� dx; xÞ is 0O0
�

þ P
�
x� r is 0C0; n� 1 nodes in ð0; x� rÞ;

½x� r; x� rþ dxÞ is 0O0; ½x� rþ dx; xÞ is 0E0
�

¼ PDCðx� dx; nÞð1� fðx� dxÞdxÞ
þ PDCðx� dx; n� 1Þfðx� dxÞdx
þ PCðx� r; n� 1Þgðx� rÞdx

) dPDCðx; nÞ
dx

¼ PDCðx; nÞ � PDCðx� dx; nÞ
dx

¼ PDCðx� dx; n� 1Þ � PDCðx� dx; nÞ½ �fðx� dxÞ
þ PCðx� r; n� 1Þgðx� rÞ:

Similar to Section 3, we assume that the spatial

density function, f , doesn’t have any singularity in

ð0; LÞ. Hence, according to the last equality, dPDCðx;nÞ
dx

has no singularity (note that PCð0; nÞ � Pnodesð0; nÞ ¼
P ðn nodes in ð0; 0ÞÞ ¼ 0; 8n). Hence, PDCðx; nÞ is a

continuous function for n � 1, and x� dx can be

replaced with x in the right hand of the last equation

to obtain (19). tu
We start from n ¼ 0 and find PDCðx; nÞ for n ¼ 1; 2; . . . ,

using the recursive equation (with respect to n) in (19).
Having PDCðx; n� 1Þ, the third equation in (19) is a first
order Ordinary Differential Equation (ODE) with respect to
x, and can be solved numerically with the aid of numerous
algorithms for solving ODEs [25].

Given a pdf fp (i.e., direct distribution), the probability of

connectivity can be computed numerically, using the

following approach:
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Approach 4.

1. Form a spatial density function f by scaling fp with
an arbitrary scaling factor (e.g., let fðxÞ ¼ fpðxÞ;
8x > 0) and compute Pnodesðx; nÞ using (17).

2. Use (19) to compute PDCðx; kÞ for k ¼ 0; . . . ; n,
x 2 ½0; L�.

3. Calculate the probability of network connectivity,
PCðLjnÞ, using (18).

In this approach, OðnÞ ODEs should be solved, which
may sound very costly. However, note that PDCðx; kÞ is also
being computed for 0 < x < L and 0 � k � n, when
Approach 4 aims to find PCðLjnÞ; from which PCðxjkÞ; 0 <
x < L; 0 � k � n can be calculated directly, using (18). In
other words, when there are n nodes in the network, this
approach finds the probability of connectivity not only for
the destination, but also for every position in the path and
every number of nodes in the network less than n, when
run once. To the best of our knowledge, among the papers
focused on connectivity, the approach proposed in [24] to
compute an approximate probability of connectivity with
an arbitrary distribution is of relatively high accuracy. It is
worth mentioning that the approach presented in [24] needs
to compute the same order (OðnÞ) of definite integrations. In
the next section we will show that our proposed approach is
much more accurate than the approach proposed in [24],
especially for small number of nodes corresponding to
sparse situation.

6 NUMERICAL RESULTS

In this section, we present numerical results for probability
of connectivity obtained from our approaches and compare
them with simulation and existing methods. We also obtain
exact values for probability of connectivity for some
distributions, that could not be handled by the existing
methods in the literature.

Example 1. Uniform distribution of n nodes.

In this example, we compute the probability of con-
nectivity for networks where n nodes are distributed

independently and uniformly, using Approach 4 and
compare the obtained probability with the probability of
connectivity computed from the exact formula of [12].
These probabilities are plotted in Fig. 1 versus the number
of nodes, for different transmission ranges. Here, we
consider a path of length 1 km and transmission ranges
equal to 50, 100, and 200 meters. It can be seen that the
results obtained from our approach are in perfect match
with the exact formula of [12], validating the accuracy of the
proposed approach (note that the formula of [12] works
only for uniform distribution). For each transmission range
the formula in [12] is applied for some points in the rising
regions of the corresponding curves, because these regions
have more information content. Hence, the “�” marks in
Fig. 1 are drawn in different number of nodes for
different curves.

Example 2. Uniform spatial density in the case of variable
number of nodes.

Here, we are going to validate (12) by comparing it with
the probability of connectivity computed from Approach 2
and simulation results. The resulted probabilities are
plotted versus density of nodes in Fig. 2. Here, we consider
a 1 km-long path and compute the probability of con-
nectivity for different transmission ranges. In Approach 2,
we divide the path into subregions of length 1 cm which is
a very good approximation of being continuous. The
accuracy of Approach 2 can be even improved by short-
ening the subregions. The probabilities obtained from
simulation are averages over connectivity of 10,000 ran-
domly distributed sets of nodes.

Example 3. Different distributions of n nodes.

In this example, we obtain the probability of connectivity
in the case that n nodes are distributed in the network
according to three different pdfs, namely Random Way-
point [18], Triangle, and uniform distributions.

Random Waypoint was introduced in [18] as a generic
mobility model. The pdf corresponding to the distance of
each node from the source in steady-state was first derived
in [26]
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Fig. 1. Probability of connectivity versus the number of nodes for
different transmission ranges, r; where n nodes are uniformly distributed
in a 1D network.

Fig. 2. Probability of connectivity of 1D networks with uniform spatial
density function, where the number of nodes is variable.



fðxÞ ¼ 6

L2
x� 6

L3
x2; 0 � x � L:

The pdf for the distance of each node from the source in

the Triangle distribution is

fðxÞ ¼

4x

L2
; 0 � x � L

2
;

4ðL� xÞ
L2

;
L

2
< x � L:

8>><
>>:

We assume a path of length 1 km and transmission range

equal to 100 meters, use Approach 4 to find the exact

probability of connectivity for the distributions and

compare the results with the approximate probability

computed from [24, (5)]. The results have been illustrated

versus the number of nodes in Fig. 3. The simulation results

shown in this figure are averages over connectivity of 5,000

randomly distributed sets of nodes. It can be seen from the

figure that although [24] gives a good approximation for
probabilities close to one, it has large relative errors where
the probability of connectivity is smaller (e.g., in the case of
uniform distribution, where the exact probabilities of
connectivity are 0.5 and 0.2, the relative errors of the
approximation of the approach in [24] are 15 and 62 percent,
respectively). Sparse ad hoc networks [2] and delay tolerant
networks (DTNs) are examples when the connectedness
occurs with low probability. In these cases it is important to
have an exact evaluation of this probability.

Example 4. Applying our approach to a real-world scenario.

In this example we aim to find the probability of
network connectivity in a real-world scenario. Imagine a
1D VANET with network topology shown in Fig. 4a, in
which the drivers are supposed to reduce speed near
junctions, shopping centers, gas stations, and pedestrian
crossings. Hence, we expect a higher density of vehicles in
these parts. Let Fig. 4b present the density function related
to the steady state of this network. Here, we just generated
this distribution; however, in real-world applications, this
density function should be computed either through
analytical approaches or by simulation tools after con-
sidering a certain mobility model which governs the
movement of vehicles [27].

Here, the number of nodes is variable and Approach 2
can be used to compute the probability of connectivity. We
use a density function whose values numerically match with
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Fig. 3. Probability of connectivity of 1D networks with different
distributions of fixed number of nodes, computed from Approach 4,
the approximate analysis in [24], and simulation.

Fig. 4. A sample road topology and corresponding spatial density function in a typical VANET. (a) Road topology, (b) spatial density function.

TABLE 1
Simulation and Analytical (Approach 2) Results

for Connectivity of the Network in Fig. 4



the curve in Fig. 4b. The probability of network connectivity
calculated by Approach 2, as well as simulation results for
two different transmission ranges of nodes, have been
shown in Table 1. The simulation results are acquired by
averaging over connectivity of 1e6 random distribution of
nodes according to density function of Fig. 4b.

Example 5. Probability of connectivity and network proto-
col design.

Probability of connectivity computed by the approaches
presented in this work can be utilized for network protocol
design purposes. Several routing algorithms proposed in
VANETs have been founded on the connectivity status of
different streets [5], [6], [7]. Adaptive Connectivity Aware
Routing (ACAR) protocol proposed in [6] is an example
where routing decisions are made based on probability of
connectivity at different routes. In [6] it is assumed that
vehicles are provided with information about the traffic
statistics of different parts of the network such as traffic
density and average velocity of vehicles, via GPS and
navigation systems. Having the density of vehicles, a
uniform distribution is assumed at each road segment
(i.e., portion of a street between two adjacent junctions) with
a corresponding density. The ACAR protocol selects an
optimal route with the best transmission quality, which is
defined as the multiplication of data delivery ratio (i.e., 1�
packet error rate (PER)) and the probability of connectivity
of the route. However, the assumption of uniform distribu-
tion is debatable and more realistic distributions can be
considered at the road segments to reflect the impact of
many factors such as traffic lights on the distribution of
vehicles, as stated in [6].

In this example, we are going to verify the adverse effect
of simplifying assumptions, such as uniform distribution,
on probability of connectivity and performance of ACAR.
We employ a simplified version of the network model
presented in [23] (as our realistic spatial density). We show
the ACAR peformance for two cases. In the first case, we
utilize the probability of connectivity regarding realistic
spatial density, and in the second case, a uniform estimation
at each street (that is a street having the same total density
but with uniform distribution (see Fig. 5)) is utilized in
computing the probability of connectivity. The streets of the
network studied in [23] consist of three parts, namely front
part, middle part, and end part, with lengths of 200, 1,000,
and 200 m, respectively. It is assumed that the vehicles take
the average speed of 7, 15, and 5 m/s in these parts,
respectively. The spatial density of vehicles is then obtained
from the arrival rates of the vehicles to the street. Fig. 5
shows the density function of a street in this network with
arrival rate of 0.8. The vehicles arrival rate at each street is
determined based on the departure rates from other streets
as well as vehicle mobility patterns at intersections. The
probabilities of connectivity of the realistic spatial density
and the uniform estimation at three streets are computed
for three typical total arrival rates (i.e., at both directions of
the street) with transmission range of 100 m, whose results
have been shown in Table 2. It can be observed that using
the uniform estimation instead of realistic spatial density
may lead to large errors in probability of connectivity.

Now, consider the network topology shown in Fig. 6,
where node A has a packet to send for node B via two
available routes (solid line (green) and dashed line (red)
routes). If the effect of PER on transmission quality of the
street segments is neglected (i.e., the data delivery ratio
equals one), the transmission quality of the two routes
would be equal to the multiplication of the probabilities of
connectivity of the road segments at each route. Table 3

SHARIF-NASSAB AND ASHTIANI: CONNECTIVITY ANALYSIS OF ONE-DIMENSIONAL AD HOC NETWORKS WITH ARBITRARY SPATIAL... 1433

Fig. 5. Density function of simplified version of the network presented in
[23] and its uniform estimation for arrival rate of vehicles to the street
being 0.8.

TABLE 2
Connectivity of the Street with Spatial Density Shown in Fig. 5

Fig. 6. A sample network topology, where ACAR route selection differs
when the probability of connectivity is computed based on realistic
spatial density and uniform estimation.

TABLE 3
Transmission Qualities of Different Routes in Fig. 6



shows the transmission qualities of the solid line and the
dashed line routes when the probabilities of connectivity
are computed based on the realistic spatial density and the
uniform estimation (given in Table 2). It is observed that the
solid line route would be selected by ACAR if the
probability of connectivity is computed based on the
realistic spatial density, while the dashed line route is
selected when the uniform estimation is utilized.

It is worth mentioning that for estimating the probability
of connectivity at each street in the above example, we need
an approach to be able to work based on vehicle density,
because the information on the number of vehicles at each
street is not easily available at each time instant.

7 CONCLUSIONS

Connectivity is one of the important aspects of ad hoc
networks. In this work, we treated the concept of
connectivity in a new way and considered connectivity of
positions whose contribution led us to simple expressions
and tractable algorithms for calculating the exact prob-
ability of connectivity of nodes and connectivity of the
path. We considered two cases and conducted separate
analyses for them. In the first case where the number of
nodes was variable, we proposed an analytical approach to
compute the exact probability of connectivity of discrete
and continuous networks for any spatial density function,
provided that nodes are independently and identically
distributed. For continuous networks, we derived an
integral formula for the probability of connectivity using
which we could obtain closed-form formulas for some
special density functions. As an example, we derived exact
expression for the probability of connectivity correspond-
ing to uniform spatial density. In the second case in which
the number of nodes was assumed to be fixed, we
proposed an analytical approach to compute the prob-
ability of connectivity in the networks where we were
given an arbitrary probability distribution function, accord-
ing to which n nodes are placed in the network
independently. Finally, we compared the results of analysis
to some previously reported methods for the second case
and derived the probability of connectivity for some spatial
densities. We also validated our approach by simulation.
Considering more realistic transmission ranges due to
fading and other effects, and nodes with different
transmission ranges are of our future works.
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