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Abstract: A specific class of differential cryptanalytic approach, named as impossible differential attack, has been
successfully applied to several symmetric cryptographic primitives in particular encryption schemes such as
Advanced Encryption Standard (AES). Such attacks exploit differences that are impossible at some
intermediate state of the cipher algorithm. The best-known impossible differential attack against AES-128 has
applied to six rounds. An attack on AES-128 up to seven rounds is proposed. The proposed attack requires
2115.5 chosen plaintexts and 2109 bytes of memory and performs 2119 seven-round AES encryptions. This is
also the best-known attack on a reduced version of the AES-128 till now.
1 Introduction
Rijndael is an iterated block cipher with variable key and
block lengths of 128–256 bits in steps of 32 bits. Rijndael
versions with a block length of 128 bits, and key lengths of
128, 192 and 256 bits have been adopted as the Advanced
Encryption Standard (AES) [1]. Because of the worldwide
use of AES, it is essential to re-evaluate the security of
AES under various cryptanalytic techniques. In this paper,
we study the security of 128-bit key version of AES-128
against the impossible differential attack. Differential
cryptanalysis [2] analyses the evolvement of the difference
between a pair of plaintexts in the following round outputs
(differentials) in an iterated block cipher. The basic idea of
impossible differential attack is to look for differentials that
hold with probability 0 (or impossible differentials) to
eliminate the wrong keys and keep the right key [3]. The
first impossible differential attack against AES has been
applied to five rounds of the AES-128 by Biham and
Keller [4]. This attack was improved by Cheon et al. [5] to
apply to six rounds of the AES-128. In 2004, Phan [6]
extended this attack on the AES -192 up to seven rounds.
In the case of 128-bit key length, for a seven-round version
of AES, only two attacks are known. The first is due to
Ferguson et al. [7] and requires 2120 cipher executions for a
number of plaintexts equal to 2128–2119. The second one,
due to Gilbert and Minier [8], is a marginal speed up of
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the 128-bit key search requiring 232 chosen plaintexts. In
this paper, we propose a new impossible differential attack
on AES-128 reduced to seven rounds which requires 2115.5

chosen plaintexts and performs 2119 seven-round AES
encryptions. This is the best-known attack on a reduced
version of AES-128 till now. The paper is organised as
follows. In Section 2, we briefly describe the AES
algorithm. A new impossible differential property of the
AES is introduced in Section 3. In Section 4, we propose
the new impossible differential attack on seven rounds of
the AES-128, and Section 5 concludes the paper.

2 Brief description of AES
The AES [1] is a symmetric block cipher that supports key
sizes of 128, 192 and 256 bits. The 128-bit plaintexts are
represented by a 4 � 4 matrix of bytes, where each byte
represents a value in GF(28). An AES round is composed
of the following four operations:

† SubBytes (SB): a bytewise transformation that applies on
each byte of the current block an 8-bit to 8-bit nonlinear
S-box.

† ShiftRows (SR): a linear operation that rotates on the left
all the rows of the current matrix (0 for the first row, 1 for the
second, 2 for the third and 3 for the fourth).
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† MixColumns (MC): another linear operation represented
by a 4 � 4 matrix. Each column of the input matrix is
multiplied by the MixColumns matrix in GF(28).

† AddRoundKey (AK): a simple XOR operation between
the input matrix and the subkey of the current round.

The MixColumns operation is omitted in the last round
and an initial key addition is performed before the first
round for whitening. We also assume that the
MixColumns operation is omitted in the last round of the
reduced-round variants. The number of rounds is variable
depending on the key length, 10 rounds for 128-bit key, 12
for 192-bit key and 14 for 256-bit key.

2.1 Notations

In this paper, we use the following notations: xIi denotes
the input of the round i, while xSi , x

R
i , x

M
i , and xOi denote

the intermediate values after the application of SubBytes,
ShiftRows, MixColumns and AddRoundKey operations of
round i, respectively. Obviously, xOi�1 ¼ xIi holds for i � 2.
We denote the subkey of the ith round by ki, and the
initial whitening subkey is k0. In some cases, we are
interested in interchanging the order of the MixColumns
operation and the subkey addition. As these operations are
linear, they can be interchanged, by first XORing the data
with an equivalent key and then applying the MixColumns
operation. We denote the equivalent subkey for the
changed version by wi, that is, wi ¼ MC�1(ki), and xWi
denotes the intermediate value after the application of
AddRoundKey with equivalent subkey. Let xi,col( j) denote
the jth column of xi, where j [ 0, 1, 2, 3f g. We also
denote the byte in the mth row and nth column of xi by
byte xi,m,n where m, n [ {0, 1, 2, 3}. Another notation for
bytes of xi is an enumeration {0, 1, 2, . . . , 15}, where the
byte xi,m,n corresponds to byte 4nþm of xi, that is xi is
exhibited as an array of 4 � 4 bytes with byte indexed as
shown in Fig. 1.

3 Four-round impossible
differential property of AES
In [4], a four-round impossible differential property of AES
was presented. This four-round property states that given a
pair of xI2 which is equal in all bytes except one in which
the pair differs, then the corresponding xR5 cannot be equal
in any of the following combinations of byte positions:

Figure 1 Byte coordinate of 128-bit data block
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(0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15) nor (3, 6, 9, 12).
In [4–6], this property was used to attack the reduced
round AES. Here we state a new impossible differential
property on which our attack is based.

The new impossible differential property states that given a
pair of xI2 which is equal in all bytes except one, then the xR5
cannot be equal in all bytes except three bytes in one column
in which the pair differs. The reason is that one active byte
(a byte which has non-zero difference) in xI2 will result in
16 active bytes in xO3 , but 3 active bytes in one column of
xR5 will result in 12 active bytes in xI4, so the intermediate
differences contradict each other. Note that independent of
which byte of xI2 is active or which three bytes of a column
of xR5 are active, the impossible differential property holds.
Fig. 2 illustrates the impossible differential property in one
of the possible cases. The boxes with black circle refer to
active bytes, whereas the white boxes denote the equal
bytes in the pair. Arrows labelled SB, SR, MC and AK
denote the SubBytes, ShiftRows, MixColumns and
AddRoundKey operations, respectively, and arrows labelled
SB21, SR21, MC21 and AK21 denote the inverse of the
operations.

4 New impossible differential
attack on seven rounds of AES
Using the above impossible differential property, we can
attack a seven-round variant of AES-128. Fig. 3 illustrates
the attack: the white boxes refer to bytes with zero
difference, the black boxes represent known bytes that have
non-zero difference and the boxes with black circle refer to
unknown bytes that have non-zero difference.

4.1 Attack procedure

In order to make the attack faster, we first perform a
precomputation: For all possible pairs of values of xM1,col(0)
which differ in only one byte , compute the values of
the four bytes 0, 5, 10 and 15 of xI1, that is
compute xI1(0, 5, 10, 15) ¼ SB�1

W SR�1
WMC�1(xM1,col(0))

for all possible pairs. Store the pairs of 4-byte values in a
hash table Hp indexed by the XOR difference in these
bytes. Note that XOR difference of the xI1 is equal to XOR
difference of the corresponding plaintexts because
xI1 ¼ P � k0. There are (28)3 � 216 � 4 ¼ 242 possible
pairs of values of xM1,col(0) with the above condition (28

possible pairs for each of three bytes with zero difference,
about 216 possible pairs for the active byte and 4 possible
positions for the active byte). So Hp have 2

32 rows (possible
values for the XOR difference in four bytes) and on average
there are 242/232 ¼ 210 pairs in each row.

Also in order to decrease the data complexity, we use
‘structures’. A structure is defined as a set of 232 plaintexts
which have fixed values in all but four bytes (0, 5, 10, 15).
Such a structure proposes 232 � (2322 1) � 1/2 ’ 263

pairs of plaintexts.
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Figure 2 New impossible differential property of AES
The procedure of this attack is as follows.

Step 1. Take 2n structures (i.e. 2n � 232 ¼ 2nþ32 plaintexts, so
2n � 263 ¼ 2nþ63 plaintext pairs). Perform the following for
each structure:

† ask for the encryption of the structure,

† insert all the ciphertexts into a hash table indexed by bytes
1, 2, 4, 5, 8, 11, 14 and 15

† for each row of the hash table with more than one
ciphertext, select every pair (C1, C2).

At the end of this step, we expect to have
2nþ63

� (2�8)8 ¼ 2n�1 plaintext pairs whose corresponding
ciphertext pairs are equal in bytes 1, 2, 4, 5, 8, 11, 14 and
15 (Fig. 3).

Step 2.Guess the 32-bit value at bytes 3, 6, 9 and 12 for the k7
and partially decrypt these bytes in the last round, that
is, compute xO6,col(3) ¼ SB�1

W SR�1[xO7 (3, 6, 9, 12)�
k7(3,6, 9,12)]. Choose pairs whose difference
DxW6,col(3) ¼ MC�1(DxO6,col(3)) is non-zero at byte xW6,1,3 and
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zero at other three bytes (Fig. 3). The probability of such a
difference is p01 ¼ (2�8)3 ¼ 2�24 and consequently we
expect to have 2n�1

� 2�24
¼ 2n�25 pairs with this condition.

Step 3. Guess the 32-bit value at bytes 0, 7, 10 and 13 for
the k7 and partially decrypt these bytes in the last round,
that is compute xO6,col(0) ¼ SB�1

W SR�1[xO7 (0, 7, 10, 13)�
k7(0, 7, 10, 13)]. Choose pairs whose difference
DxW6,col(0) ¼ MC�1(DxO6,col(0)) is non-zero at byte xW6,0,0 and
zero at other three bytes (Fig. 3). The probability of such a
difference is p001 ¼ (2�8)3 ¼ 2�24, so we expect to have
2n�25

� 2�24
¼ 2n�49 pairs with this condition. The total

probability of a desired difference in steps 2 and 3 is
equal to p1 ¼ p01 � p001 ¼ 2�48. So at the end of this step,
we have 2n�49 pairs of xW6 which have zero difference in all
bytes except bytes xW6,0,0 and xW6,1,3.

Step 4. Guess the 16-bit value at bytes 0 and 13 for the w6

and partially decrypt these bytes in the sixth round, that is,
compute xO5,0,0 ¼ SB�1

W SR�1(xW6,0,0 �w6,0,0) and xO5,1,0 ¼

SB�1
W SR�1(xW6,1,3 � w6,1,3). Choose pairs whose difference

DxW5,col (0) ¼ MC�1(DxO5,col (0)) is zero at one byte. The
probability of such a difference is p2 ¼ 2�8

� 4 ¼ 2�6

because the probability of a zero difference in one byte is
Figure 3 Seven-round impossible differential attack
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228, and this byte can be in one of four possible positions in a
column. So we expect to have 2n�49

� 2�6
¼ 2n�55 pairs

which have such a difference.

Step 5. In this step, we eliminate wrong 32-bit values at bytes
0, 5, 10 and 15 for the k0 by showing that the impossible
differential property holds if these keys were used. We use
the hash table Hp which has been made in the
precomputation stage. The algorithm of this step is as
follows.

† Initialise a list A of the 232 possible values of the bytes 0, 5,
10 and 15 of k0.

† For each of 2n255 remaining pairs (P1, P2), compute
P 0

¼ P1 � P2 in the four bytes 0, 5, 10 and 15.

† Access the row P 0 in Hp, and for each pair (x, y) in that
row, remove from the list A the value P1 � x, where P1 is
restricted to four bytes (plaintext bytes 0, 5, 10 and 15).

† If A is not empty, output the values in A along with the
guess of k7 at bytes 0, 3, 6, 7, 9, 10, 12 and 13.

Note that there are 210 pairs in each row of Hp on
average, so in the third part of this step, we eliminate
about 210 wrong keys for each plaintext pair (P1, P2).
The probability of a wrong 32-bit value at bytes 0, 5, 10
and 15 for k0 is (12 2232), so after analysing all 2n255

pairs, we expect only N ¼ 232 � (1� 2�32)m wrong values
of the four bytes of k0 remain, where
m ¼ 2n�55

� 210 ¼ 2n�45. Suppose m ¼ 2k, the expected

number is about N ¼ 232 � (1� 2�32)2
32
�2k�32

’
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232 � (e�1)2
k�32

’ 232� 2�1:4�2k�32

. In order to find the
right subkey, we should have N , 1. On the other hand,
we want to eliminate all 32-bit values in the list A,
unless the initial guess of the 64-bit value of the last
round key k7 or the 16-bit value of the key w6 is correct.
The wrong values (k0, w6, k7) remains with the
probability of p ¼ (28)10 � N . The probability ‘p ’ should
be very small (less than 2�10), so we have
N � 280 , 2�10 which leads to k . 38:45. Hence with
m ¼ 238:5, if there remains a value for k0, we can assume
the guessed 64-bit value for k7 and the guessed 16-bit
value for w6 are correct.

4.2 Analysis of the attack complexity

In order to derive m ¼ 238:5, we need to
have n ¼ 45þ 38.5 ¼ 83.5 and consequently the data
complexity of the attack is 2nþ32

¼ 2115:5 chosen plaintexts.
The time complexity of the attack is composed of four
parts: step 2 requires 2� 232 � 2n�1

� 4=16 ¼ 2nþ30 one
round encryptions, because for each of 232 guessed keys,
we should check four bytes for each of the 2n�1 pairs. Step
3 requires 2� 232 � 232 � 2n�25

� 4=16 ¼ 2nþ38 one-
round encryptions, because for each of 232 guessed keys in
step 2, we should guess 232 keys in this step and for all of
these keys, we should check four bytes for each of the 2n�25

remained pairs. Step 4 requires 2� 264� 216 � 2n�49
�

2=16 ¼ 2nþ29 one-round encryptions, because for all of 264

guessed keys in steps 2 and 3, we should guess 216 keys in
this step and for these keys, we should check two bytes
for each of the 2n�49 remained pairs. In step 5, 2n�55 pairs
are analysed, leading to 210 memory access on average to
Hp and 210 memory access to A. This step is repeated 280
Table 1 Comparison of impossible differential cryptanalysis of
AES variants

Variant Rounds Data Workload Memory Source

AES-128 5 229.5 231 242 [4]

AES-128 6 291.5 2122 293 [5]

AES-128 7 2115.5 2119 2109 this paper

AES-192 7 292 2186 2157 [6]

AES-256 7 292.5 2250.5 2157 [6]

Table 2 Comparison of our results with previous attacks on seven-round
AES-128

Attack Data Workload Memory Source

partial sum 21282 2119 2120 261 [7]

collision 232 2128 280 [8]

impossible differential 2115.5 2119 2109 this paper
31
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times (for the guess of w6 and k7). Therefore the time
complexity is 2n�55

� (210 þ 210)� 280 ¼ 2nþ36 memory
access, which is equivalent to about 2nþ30 one-round
encryptions. Consequently for n ¼ 83.5 the overall
complexity of the attack is about (2113:5 þ 2121:5þ
2112:5 þ 2113:5)=7 ’ 2119. We can find eight bytes of k7
with time complexity of 2119. We can find another eight
bytes of k7 by a simple exhaustive search, so the whole key
can be found with time complexity of 2119 þ 264 ’ 2119

encryptions. The precomputation stage requires about
2� 242=7 ’ 240:5 encryptions and the required memory is
about 245 bytes. Meanwhile, 2112=23 ¼ 2109 bytes of
memory are needed to store the list of deleted key values
(k0, w6, k7).

5 Conclusion
We have proposed a new impossible differential attack
against AES-128 reduced to seven rounds. The time
complexity and required memory of this attack are less
expensive than the previous impossible differential attacks.
In Table 1, we compare the results of the new attack with
the results of previous impossible differential attacks. In
Table 2, we compare our attack with other attacks which
applied on seven rounds of AES-128.

6 Acknowledgments
The authors would like to thank Taraneh Eghlidos, Frederik
Armknecht, Ahmad-Reza Sadeghi and anonymous reviewers
for technical discussion and invaluable comments. They also
thank the Iranian NSF for establishing the cryptography
chair in I.R. Iran. This work was partially supported by
Iran Telecommunications Research Center and the
cryptography chair of the Iranian NSF.
The Institution of Engineering and Technology 2008
7 References

[1] DAEMEN J., RIJMEN V.: ‘The design of Rijndael: AES – the
Advanced Encryption Standard’ (Springer Verlag, 2002)

[2] BIHAM E., SHAMIR A.: ‘Differential cryptanalysis of DES-like
cryptosystems’, J. Cryptol., 1991, 4, (1), pp. 3–72

[3] BIHAM E., BIRYUKOV A., SHAMIR A.: ‘Cryptanalysis of Skipjack
reduced to 31 rounds’. Advances in Cryptology,
Proc. EUROCRYPT 99, Lect. Notes Comput. Sci., 1999,
1592, pp. 12–23

[4] BIHAM E., KELLER N.: ‘Cryptanalysis of reduced variants of
Rijndael’. 3rd AES Conf., 2000

[5] CHEON J.H., KIM M., KIM K., LEE J.-Y., KANG S.: ‘Improved
impossible differential cryptanalysis of Rijndael
and Crypton’. Proc. 3rd Int. Conf. Information Security
and Cryptology (ICISC), Lect. Notes Comput. Sci., 2001,
2288, pp. 39–49

[6] PHAN R.C.: ‘Impossible differential cryptanalysis of
7-round Advanced Encryption Standard (AES)’, Inf.
Process. Lett., 2004, 91, (1), pp. 33–38

[7] FERGUSON N., KELSEY J., LUCKS S., ET AL.: ‘Improved
cryptanalysis of Rijndael’. Proc. Fast Software
Encryption (FSE ’00), Lect. Notes Comput. Sci., 2001,
1978, pp. 213–230

[8] GILBERT H., MINIER M.: ‘A collision attack on 7
rounds of Rijndael’. Proc. 3rd AES Conf., National
Institute of Standards and Technology, April
2000, pp. 230–241
IET Inf. Secur., 2008, Vol. 2, No. 2, pp. 28–32
doi: 10.1049/iet-ifs:20070078


