IEEE SIGNAL PROCESSING LETTERS, VOL. 19, NO. 10, OCTOBER 2012

607

One-Bit Measurements With Adaptive Thresholds

Ulugbek S. Kamilov, Student Member, IEEE, Aurélien Bourquard, Student Member, IEEE, Arash Amini, and
Michael Unser, Fellow, IEEE

Abstract—We introduce a new method for adaptive one-bit
quantization of linear measurements and propose an algorithm for
the recovery of signals based on generalized approximate message
passing (GAMP). Our method exploits the prior statistical infor-
mation on the signal for estimating the minimum-mean-squared
error solution from one-bit measurements. Our approach allows
the one-bit quantizer to use thresholds on the real line. Given
the previous measurements, each new threshold is selected so as
to partition the consistent region along its centroid computed by
GAMP. We demonstrate that the proposed adaptive-quantization
scheme with GAMP reconstruction greatly improves the perfor-
mance of signal and image recovery from one-bit measurements.

Index Terms—Analog-to-digital conversion, approximate mes-
sage passing, compressive sensing, one-bit quantization.

I. INTRODUCTION

HE linear acquisition model, where an unknown signal or

image x € R™ isrepresented by measurements z = Ax €
R™, is central to signal processing, and many practical acquisi-
tion devices can be modeled in this way. The challenge is often
to recover x by combining the measurements with known prior
information [1]-[3]. For example, compressive sensing [4], [5]
has demonstrated that it is possible to exploit the sparsity of the
signal when performing the nonlinear reconstruction of x from
z, even when m < n. However, the standard approaches disre-
gard quantization.

In realistic settings, the measurements z are never exact and
must be discretized prior to further digital processing. In this
work, we are concerned with the estimation of x from quantized
measurements of the form y = Q(Ax), where Q is a one-bit
scalar quantizer. This concept was introduced in the context of
compressive sensing in [6]. The key advantage of one-bit quan-
tization is its simple and cost-effective hardware implementa-
tion as a comparator. Numerous empirical results [6]-[8] and
rigorous theoretical analysis [9], [10] have demonstrated that
good reconstruction performance is achievable. In fact, one-bit
quantization outperforms multibit quantization in some prac-
tical configurations [7]. Several sophisticated algorithms recov-
ering signals from one-bit measurements were proposed in [6],

(8], [9], [11]-[13].
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Although the current formulations of one-bit compressive
sensing are fundamentally deterministic, by formulating the
problem in Bayesian terms we are able to extend the framework
to a much larger class of signals. In particular, we present
a method that can incorporate arbitrary separable priors, in-
cluding sparsity-inducing ones as special cases. Moreover,
the availability of a statistical model allows us to adapt the
discretization to the distribution of the signal and rely on
various statistical estimators. In this paper, we show that, by
tuning the comparator, it is possible to significantly improve the
performance of the one-bit framework. The main contributions
of this work are as follows:

* An adaptation of the message-passing de-quantization
algorithm of [14] to the problem of reconstruction from
one-bit measurements. The algorithm is based on gener-
alized approximate message passing (GAMP) [15] and
improves upon the state of the art. It allows the linear
expansion to be undercomplete or overcomplete, and can
incorporate a large class of priors.

+ The usage of adaptive thresholds for one-bit quantizers,
which extends the applicability of the framework. Prop-
erly chosen thresholds allow to recover signals of arbitrary
dynamic range and to use a broad class of measurement
matrices A.

* The development of an efficient threshold-selection
method. No transmission or storage of the thresholds
is required because they are fully determined from the
quantized measurements.

II. ONE-BIT COMPRESSIVE SENSING

In compressive sensing (CS), the signal x € R™ is acquired
with m < n linear measurements

7z = AX, )

where A € R™*™ is the measurement matrix. The objective
is to recover x from z and A. Although the system of equa-
tions is underdetermined, it is possible to recover the signal
if some favorable conditions on x and A are satisfied. The
common assumption is that the signal is exactly or approxi-
mately sparse in some orthonormal basis ¥. This means that
there is a vectoru = ¥ 'x € R” with most of its elements
equal or close to zero. Additionally, for certain guarantees on the
recoverability of the signal to hold, the matrix A must satisfy
the restricted isometry property (RIP) [16]. Some families of
random matrices, like appropriately dimensioned matrices with
i.i.d. Gaussian or Bernoulli elements, have been shown to sat-
isfy the RIP with overwhelming probability.

The standard CS setting assumes measurements of infinite
precision. In any realistic application, however, they have to be
quantized. One-bit compressive sensing considers the extreme
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example of quantization, where the measurements are repre-
sented by their signs

y = sign(z). 2

Unfortunately, by keeping only the sign of the measurements,
the amplitude of the signal is lost. Therefore, the standard
reconstruction algorithms seek sparse vectors x satisfying (2)
under some constraints on the dynamic range of the signal (e.g.,
Ix|l2 = 1). In general, such reconstructions are non-convex,
and practical implementations aim at finding an approximate
solution. Finally, compared to the standard case, the one-bit CS
framework further restricts the class of allowed measurement
matrices. For example, it cannot be generalized to Bernoulli
matrices A when the signal is sparse in the canonical basis [8].

III. QUANTIZATION WITH ADAPTIVE THRESHOLDS

In this section, we describe extensions of one-bit CS. We first
allow the one-bit quantizer to use adaptive thresholds. This is
useful for extending the framework to more general signals and
measurement matrices. We then provide the Bayesian formula-
tion of the recovery problem from one-bit measurements.

A. Signal and Measurement Model

We present in Fig. 1 a generalization of the one-bit compres-
sive-sensing framework. The input signal x € R™ is random
with a separable distribution

pe(x) = [[ 2o (). 3)
=1

The noiseless measurement vector z is obtained via the matrix
A € R™*", Each entry z; of z = Ax is then compared to
some scalar 7; and set to +1 if it is larger that —7; or to —1 if it
is smaller. Formally, this can be written as

y = Q(Ax;7), 4)

where 7 € R™ is the vector of thresholds and the quantizer
Q : R™ — {—1,1}" is the Cartesian product of m scalar
quantizer components

.y __[+1 whenz> —71
qlzi7) = { —1 whenz < —7. (3)

We define the inverse image of the component quantizer g as

¢y = { E:Ji))

ify=+1
ify = —1. ©)

The best performance is achieved when the binary measure-
ments are obtained sequentially. Accordingly, the previously
obtained y; can be used as feedback to adapt the next threshold
value. Thus, 7,41 does not constitute additional storage. It is
noteworthy that the proposed formulation is compatible with
standard one-bit compressive sensing when the signal prior is
sparse and the thresholds are all set to zero.
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Fig. 1. Extended one-bit CS model considered in this work. The vector x &
R™ with i.i.d. prior is estimated from scalar one-bit quantized measurements
¥y € R™. The quantizer simply compares each input z; = [Ax]; to a threshold
7; and sets the output to either 41 or —1. The best performance is achieved
when the thresholds are selected adaptively.

x e R"

A

B. Bayesian Formulation

We construct the conditional probability distribution for the
signal x given the measurements y as

pxly(x|y) ocpy|z(y|z)px(X)

n

x H ll{zvie’l_l(yrﬁ;ﬂ)}(zi) H pw(Ij)v 7

i=1 =1

where 1(-) is the indicator function, and where o< denotes iden-
tity after normalization to unity. The distribution (7) provides a
complete statistical characterization of the problem. In partic-
ular, the MMSE estimator of x is specified as

XMMSE = [E[X|Y]- ®

Since (8) is intractable in direct form, we develop a simple com-
putational approximation in the sequel.

IV. ESTIMATION WITH GENERALIZED APPROXIMATE
MESSAGE PASSING

High-dimensional integration complicates the evaluation of
the posterior mean. We approximate it iteratively with a simple
message-passing algorithm based on the Gaussian approxi-
mated belief propagation (BP) called generalized approximate
message passing (GAMP) [15]. The algorithm is an extension
of previous methods to nonlinear measurement channels [17],
[18]. Recently, GAMP was successfully applied to reconstruct
data from multibit quantized linear measurements [14]. For
the complete analysis and optimality conditions of Gaussian
approximated BP methods, we refer the reader to [15], [18],
[19].

Given the measurements y € R™, the measurement matrix
A € R™*" the vector of thresholds 7 € R", and the prior py,
the GAMP-based MMSE estimation proceeds as follows:

1) Initialization: Set t = 0 and evaluate

%' =E[x], !

L =var[x], §'=0, ©)]

where the expected value and the variance are with respect
to px in (3).
2) Measurement update: First, compute the linear step

V;+1 =(Ae AWV,

f)t-‘,-l :Axt _ V;+1 ° ét7

(10a)
(10b)
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where e denotes the Hadamard product (i.e., element-wise
multiplication). Then, evaluate the nonlinear step

§F =Fy (y, . ptl v, (11a)
vitt =Fy (y, 7, p" v, (11b)

where the scalar functions F; and F5 are applied compo-
nentwise and given by

Fy(y, 75, 0p) = — (E [2lz € ¢ wim)] — (r +)) .

P
. 1 var [z|z € ¢ (y;T)
Foly, 7,0, vp) = - <1 - [ ” ] .
P P

The expected value and the variance are evaluated with
respect to 2 ~ N(7 + p,vp).
3) Estimation update: First, compute the linear step

vffH = ((A ° A)Tv?’l) -t ,

P =gt 4 vitl o (AT,

(12a)
(12a)

where the inversion is componentwise. Then, evaluate the
nonlinear step

(13a)
(13b)

}A(t+1 :Gl (f't+l:va+1§px) s

t+1 ~t+1 t41,
Vg;+ _G2 (I‘ :Vr+ ﬂp.L) s

where the scalar functions G; and Go are applied compo-
nentwise and given by

G1(7,vp;ps) = E[z|F],

G2(727 Uy} ])L) = Var[m|f].

The expected value and the variance are evaluated with
respect to py;(-|7) o G(+;7, v, )p.(-), where G(+; 7, v,.)
is the Gaussian pdf of mean # and variance v,.. This is
essentially an AWGN denoising problem with noise n ~
N(0,v,.).

4) Sett «— ¢+ 1 and proceed to step 2).

For each iteration £ = 0,1,2, ..., the proposed update rules
produce estimates X* of the true signal x. Thus, the algorithm re-
duces the intractable high-dimensional integration to a sequence
of matrix-vector products and scalar non-linearities.

V. ADAPTIVE THRESHOLDS

Depending on A and 7, each y; defines a particular half-space
containing x that is delimited by a hyperplane. The intersec-
tion of these m domains forms a convex consistent set £! inside
which any solution X is associated with the same vector y. Ac-
cording to this geometrical interpretation, the theoretical MMSE
solution that is estimated using GAMP is the center of mass of
the probability distribution in 2.

An efficient way to reduce the quantization error is to se-
lect T adaptively. As a computationally tractable solution, we
propose to adapt each next 7; such that the corresponding hy-
perplane passes through the center of mass %X; of the currently
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Fig. 2. Geometrical representation of one-bit CS withn = 2 and m = 6.
The use of fixed versus adaptive thresholds is illustrated on the left and right,
respectively. The consistent sets (white zones) are obtained from the same A,
assuming a bounded distribution on x. The oracle is represented by a cross.

known consistent set 2,. Given the currently known measure-
ment vector y;, we estimate X; using GAMP according to the
joint posterior probability py|y, . For large-scale problems, sev-
eral thresholds can be updated simultaneously. Note that, due to
the adaptive nature of the approach, the full knowledge of the
measurements is required at reconstruction. Moreover, correct
recovery of the thresholds relies on the fact that the same stop-
ping criteria are used for GAMP during the measurement and
reconstruction processes.

In Fig. 2, we illustrate how the use of adaptive thresholds
yields consistent sets that are closed as well as substantially
smaller than when applying zero thresholds on the same
measurements. These observations also corroborate the perfor-
mance of reconstruction that is addressed in Section VI.

VI. EXPERIMENTAL RESULTS

A. Sparse Estimation

We consider the estimation of an n-dimensional sparse signal
x from m one-bit measurements. We perform 1000 random
trials and plot the average signal-to-noise ratio (SNR) of the re-
construction against m/n. For each trial, we generate a signal
that has length n = 100 with 50 nonzero components drawn
from the standard normal distribution, and form a measurement
matrix A from i.i.d. zero-mean Gaussian random variables of
variance 1/m.

In Fig. 3, we compare the reconstruction performance of
GAMP with Gauss-Bernoulli prior against the binary iterative
hard thresholding (BIHT) algorithm introduced in [9].! BIHT
has been shown to yield state-of-the-art performance for re-
constructing data from one-bit measurements. We consider the
standard scenario where all the thresholds are set to zero. For
fair comparison, the signal x is normalized to lie on the unit
ball. We also normalize the reconstructed signals for both algo-
rithms. The results show that GAMP significantly outperforms
BIHT over the whole range of m /n.

In Fig. 4, we compare the reconstruction performance of
GAMP with and without adaptive thresholds. The thresholds
are set according to the procedure described in Section V. As

IThe source code for the BIHT algorithm can be downloaded from http://dsp.
rice.edu/software/binary-iterative-hard-thresholding-biht-demo/
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Fig. 3. Standard scenario. The average reconstruction SNR is plotted against
the measurement ratio i/ n for GAMP (solid) and BIHT (dashed) estimations
of sparse signals. The plot demonstrates that GAMP yields considerable im-
provement (up to 2 dB).

50 T T T
- 8 —Fixed Thresholds
—e—Adaptive Thresholds

40

s0b

SNR (dB)

4 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Rate (bits/signal entry)

Fig. 4. Adaptive scenario. The average reconstruction SNR is plotted against
the measurement ratio m/n for GAMP estimation with (solid) and without
(dashed) adaptive thresholds. The plot illustrates that significant gains can be
achieved by using one-bit quantizers with adaptive thresholds.

Fig. 5. Reconstruction of Cameraman from one-bit measurements: (a) original
image, (b) reconstruction with zero thresholds (SNR = 13.20 dB), (c) recon-
struction with adaptive thresholds (SNIRR. = 24.42 dB).

expected, the adaptive choice of the thresholds considerably
improves the quality of reconstruction.

B. Image Reconstruction

We now consider the problem of image recovery from one-bit
measurements. We use the standard 8-bit grayscale test image
Cameraman of size 128 x 128 pixels shown in Fig. 5. We
form the measurement matrix A from i.i.d. £1/4/m random
variables that follow uniform Bernoulli distribution. The re-
construction is performed from m = 3n one-bit measurements,
which corresponds to the rate of 3 bits per image pixel. We
compare the SNR performance of the GAMP reconstruction
with zero thresholds and with adaptive thresholds. GAMP is
applied with i.i.d. Gauss-Bernoulli prior on the Haar-wavelet
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coefficients of the signal. The Gauss-Bernoulli variables are
nonzero with probability 0.3 with a variance that is matched to
the average wavelet coefficient variance. Adaptive thresholds
were determined simultaneously in groups of 1000. The results
in Fig. 5 confirm that well-chosen thresholds improve the
reconstruction significantly.

VII. CONCLUSION

We have presented a method that attains a high-quality signal
recovery from one-bit linear measurements. The method relies
on the selection of adaptive thresholds and on the GAMP re-
construction algorithm. The overall algorithm is computation-
ally simple and general, allowing essentially arbitrary priors on
the signal. The practical relevance of the method has been illus-
trated through several numerical evaluations.
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