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Abstract: Multi-input multi-output-orthogonal frequency-division multiplexing is the foundation of next generation of wireless
communication systems and space-time-frequency block coding (STFBC) is considered one of the best schemes for implementing
these systems. STFBCs have very complex structures and many parameters affect their performance. Studies have shown that
permutation parameter plays a very important and sensitive role in the construction of STFBCs so much so that a small
variation of this parameter could cause a significant change in the value of the coding advantage (CA) which alters the code’s
performance. In this study, first the authors explore how the permutation parameter affects STFBCs and demonstrate that
existing permutation methods do not guarantee to attain the maximum possible CA. Next, they introduce a new structure for
STFBCs permutation, which is the basis for the design of a modified model of one recently published STFBC. Comparison
of the simulation results from the original and modified codes confirms the latter improves the performance by up to 3 dB.
This is an achievement that is also verified by theoretical analysis.
1 Introduction

It is well known that multi-input multi-output (MIMO)
systems offer more channel capacity and, as a result, the
capability of transmission at a higher data-rate compared
with single-input single-output systems. MIMO systems, by
introducing diversity, play the role of modern channel
coding in fading channels. To implement MIMO systems,
space-time coding (STC) is a highly effective solution to
handle the ruinous fading phenomenon for narrow-band
communication [1–4]. Using shorter time slots to send
symbols is, of course, a conventional method of achieving a
high-speed data transmission, but the drawback is that this
makes the channel frequency selective (FS) which can
cause an extreme intersymbol interference (ISI) in addition
to fading and under these circumstances MIMO coding
requires a complex equaliser at the receiver. In FS channels,
STC also loses the frequency diversity which is offered in
the FS channels [5].
Orthogonal frequency-division multiplexing (OFDM)

spreads symbols over a larger time slot using orthogonal
subcarriers for modulating different symbols. This technique
divides an FS channel into several frequency non-selective
channels by using multicarrier modulation scheme.
Multi-carrier is a proper modulation for FS channels. In
addition, OFDM could be easily implemented using fast
Fourier transform (FFT), where the equaliser consists of a
simple division. In an FS channel with L different paths
between each pair of transmit and receive antennas, there
exists the potential of having L different versions of
transmitted signals at the receiver. The multipath effect,
which is the time domain representation of an FS channel,
seems to be ruinous and causes ISI, but it could be wisely
used as a source of natural diversity. To do so,
MIMO-OFDM systems take advantage of both OFDM and
MIMO for multipath and fading channels, respectively.
Space-frequency block coding (SFBC) and space-time-
frequency block coding (STFBC) are two major schemes for
implementing MIMO-OFDM systems, and already many
SFBCs have been put forward [6–14]. SFBCs use both
frequency and spatial diversities [5, 6]. The performance
criteria for SFBCs are derived in [7]. For a full-diversity
SFBC, the highest available diversity is equal to LMtMr,
where Mt and Mr are the number of transmit and receive
antennas, respectively, and L is the number of the FS taps [15].
Diversity order and diversity product [coding advantage

(CA)] are two parameters which are used to evaluate the
performance of MIMO codes. The diversity order is
somehow related to the number of independent fading
coefficients that the codeword experiences. On the other
hand, the diversity product, by some means, increases as
the fading coefficients become more uncorrelated.
In a MIMO-OFDM system, one technique to decrease

correlation of the channel frequency response that occurs
because of discrete fourier transform (DFT) process at
different subcarriers is to permute the active subcarriers of
each block. In fact by employing a permutation method, the
transmit data consisting of same symbol experiences more
varying fading coefficients.
A full-rate full-diversity SFBC is proposed in [7], in which

a permutation method is applied in order to maximise the
code performance, where both the delay and power profiles
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(DPPs) of the channel are known at the transmitter. The
diversity product of this code can be decomposed into two
parts; namely, the intrinsic diversity product and the
extrinsic diversity product. The extrinsic diversity product
depends on the applied interleaving strategy and the DPP of
the channel. Then by introducing a permutation method, the
extrinsic diversity product can be increased which leads to
an improvement in the CA. The proposed codes in [16] use
a fixed permutation distance equal to N/L for all states. This
permutation method is not flexible and, therefore, the code
cannot be optimised for any arbitrary DPPs to attain the
maximum possible CA.
STFBCs have also the potential of taking the advantage of

time diversity. The design criteria for STFBCs are provided in
[15–17]. In [16], OFDM subcarriers are divided into smaller
groups, but such grouping does not reduce the diversity gain.
When the channel behaviour changes for different OFDM
blocks, diversity gain for STFBCs is MtMrL × rank(RT),
where RT is temporal correlation matrix of the channel. In
[18, 19], systematic designs for space time frequency
coding (STFCs) are presented to achieve full-diversity
STFBCs.
As in [7, 16, 19], since permutation of STFBCs can

significantly change the CA value, it obviously plays a
critical role as far as performance is concerned. Therefore it
is important to study the structure of existing permutations
and to develop more effective schemes. In this paper, we
first demonstrate that the permutation methods proposed in
the literature are not suitable in all the possible scenarios
and then propose a novel permutation scheme which takes
both temporal and frequency correlation matrices into
account. The proposed method is applicable to all the
existing STFBCs found in literature. To verify the claim,
we will take STFBCs studied in [19], apply modification on
the basis of the proposed permutation solution and examine
the performance. As will be shown, the results confirm that
the modified model offers up to 3 dB improvement. The
rest of the paper is organised as follows.
In the next section, the basic principle of MIMO-OFDM

system model is introduced. In Section 3, we review
frequency and temporal correlation matrices and investigate
permutation of STFBCs. This is followed by IV in which we
present our permutation scheme and provide a mathematical
analysis to verify the superiority of the proposed solution
over the existing methods. Section 5 describes a summary of
block circular delay diversity (BCDD) code in [19]. In
Section 6, a modification of the BCDD codes is presented
based on the proposed permutation. Section 7 presents and
discusses the simulation results and conclusion of the paper
is expressed in the last section.

Notations: we use capital boldface letters for matrices.
Superscripts (·)T, ·( )H and (·)* denote transpose, Hermitian
and complex conjugation, respectively. °, and⊗ stand for
the Hadamard and the tensor products, respectively.
Notation diag(a1, a2, …, an) represents a diagonal n × n
matrix whose diagonal entries are diag(a1, a2, …, an). C
stands for the complex field and V(t1, t2, …, tn) denotes a
Vandermonde matrix with parameters (t1, t2,…, tn), such that

V t1, t2, . . . , tn
( ) =

1 t1 t21 · · · tn−1
1

1 t2 t22 · · · tn−1
2

..

. ..
. ..

. . .
. ..

.

1 tn t2n · · · tn−1
n

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ [ C

n×n
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√

, ·⌊ ⌋ stands for the floor operation, 1a indicates a
a × a matrix of ones and Ia represents an a × a identity matrix.
2 System model

In this section, we describe the system model of a
MIMO-OFDM system. Consider an STF-coded
MIMO-OFDM system with Mt transmit antennas and Mr

receive antennas and N subcarriers within K successive
OFDM blocks. Channel impulse response during the kth
OFDM block from the transmit antenna i to the receive
antenna j is given by

hki, j z( ) =
∑L−1

l=0

ak
i, j l( )d z− zl

( )
, k = 1, 2, . . . , K (1)

where zl’s are time delays and ak
i, j l( )’s are the complex

amplitude of lth path between the transmit antenna i and the
receive antenna j which are modelled as zero-mean complex

Gaussian random variables with variances E
∣∣ak

i, j l( )
∣∣2 = s2

l

for normalisation purposes. The power of L paths are
assumed to satisfy the condition

∑L−1
l=0 s2

l = 1.
Each STF code can be formed as a KN×Mt matrix

C = CT
1 CT

2 · · · CT
K

[ ]T
(2)

where

Ck =

ck1 0( ) ck2 0( ) . . . ckMt
0( )

ck1 1( ) ck2 1( ) . . . ckMt
1( )

..

. ..
. . .

. ..
.

ck1 N − 1( ) ck2 N − 1( ) . . . ckMt
N − 1( )

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ (3)

where cki n( ) is the symbol or combination of symbols which
is transmitted on the nth subcarrier by transmit antenna i in
the kth OFDM block. The transmitter applies an N-point
inverse FFT over each column of Ck and after adding
cyclic prefix the ith column of Ck is transmitted by the
transmit antenna i.
The received signal at the antenna j, in the kth OFDM

block, after passing through the match filter, having the
cyclic prefix removed and implementing FFT, at the nth
frequency subcarrier, is given by

rkj n( ) =
∑Mt

i=1

cki n( )Hk
i, j n( ) + N k

j n( ),

n = 0, 1, . . . , N − 1 (4)

where Hk
i, j n( ) is the channel frequency response at the nth

subcarrier that is given by

F{hki,j(j)} = Hk
i,j( f )| f=nDf W Hk

i,j(n)

=
∑L−1

l=0

ak
i,j(l)e−j2pndf jl (5)

The symbol F represents the Fourier transform, Δf = 1/Td =
BW/N, Td is OFDM symbol period and BW is total
IET Commun., 2014, Vol. 8, Iss. 3, pp. 315–323
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bandwidth. N k

j n( ) denotes the zero-mean additive white
complex Gaussian noise with unit variance corresponding
to the nth frequency subcarrier at the receive antenna j and
the kth OFDM symbol duration.

3 Design criteria and frequency and temporal
correlation matrices

The CA of an SFBC depends on both the code structure and
channel characteristics. It has already been proved that in an
L-ray channel an STFBC could achieve the diversity order
of rLMt, where r is the rank of temporal correlation matrix.
Hence, to achieve maximum available diversity at least each
of LMt rows of the matrix Ck must be constructed together
and they must contain information about the same symbols.
To minimise the complexity of the receiver while attaining
maximum diversity, most existing SFBCs are designed by
using sub-blocks of LMt rows of the code which are joined
together to construct a certain type of SFBC. Therefore the
construction of any STFBC could be described based on
the design of the sub-blocks of size ΓMt ×Mt matrices Gp

k ,
for p = 1, 2, …, N/Γ Mt, where 1≤ Γ≤ L, with N being a
multiple of ΓMt. Note that this condition does not cause
any concern since zero padding or the use of smaller code
blocks could resolve this problem.
Let us assume each codeword of an STFBC can be written

as follows

Ck =

G1
k

G2
k

..

.

GNc/LMt
k

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ [ C

N×Mt (6)

as the primary codeword Gp defined as

Gp =

Gp
1

Gp
2

..

.

Gp
K

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ [ C

KGMt×Mt (7)

Then, design and analysis of the STFBC would split into its
KΓ Mt ×Mt sub-matrices Gp’s.
The pairwise error probability between two distinct

codewords C and C̃ is shown to be upper bounded as [15]

P C � C̃
( ) ≤ 2vMr − 1

vMr

( ) ∏v
i=1

li

( )−Mr
r

Mt

( )−vMr

(8)

where λi’s are the non-zero eigenvalues, v is the minimum
rank of Δ°R, D W C − C̃

( )
C − C̃
( )H

, R W RT ⊗ RF with
RT and RF denoting the temporal and frequency correlation
matrices, respectively, which will be discussed in detail at
the end of this section.
Now, we could simply use the inequality relationship (8)

for Gp as

P G � G̃
( ) ≤ 26Mr − 1

6Mr

( ) ∏6
i=1

gi

( )−Mr
r

Mt

( )−6Mr

(9)

where γi’s are the non-zero eigenvalues of D̂ ◦ R̂, with
D̂ W G − G̃

( )
G − G̃
( )H

, and R̂ being a principal
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doi: 10.1049/iet-com.2013.0244
sub-matrix of R with the same indexing which D̂ lies in
the matrix D. Matrices G and Ĝ are two distinct primary
codewords of size KΓMt ×Mt.
The diversity order of STFBC is equal to v and the

minimum value of
∏v

i=1 li is known as the CA.
Using a similar structure for Gp’s and taking two distinct

codewords C and C̃, there is at least one index p0(1≤ p0≤
N/LMt) such that Gp0

and G̃p0
are different. We may further

assume that Gp = G̃p for any p≠ p0 since the rank of Δ°R
does not decrease if Gp = G̃p for some p≠ p0. Thus, the
rank and the CA of an STFBC are equal to the primary
codeword described in (9), that is, v = ς and
min

∏v
i=1 li

( ) = min
∏6

i=1 gi
( )

.
For full-diversity STFBCs with Γ = L, the matrix D̂ ◦ R̂ is

full-rank. Hence, all the eigenvalues of D̂ ◦ R̂ are non-zero
and we could calculate the CA by utilising the following
determinant

CA = min
∏v
i=1

gi

( )
= min

(
det

(
D̂ ◦ R̂)), v = LMt (10)

Clearly, the CA of STFBCs is related to R which represents
correlation of the channel impulse response, the DPPs and
correlation of channel coefficients of different time slots. As
diversity means in MIMO systems, signals must experience
independent fading coefficients and when these coefficients
are not linearly independent, the more uncorrelated they are
the greater will be the CA achieved by the coding scheme.
In a space-time-frequency coded MIMO-OFDM system

with L-ray channel between the transmit and the receive
antennas in a quasi-static channel, (where the channel
impulse response does not change while the entire
codeword of an STFBC is being sent) there are only LMt

linearly independent fading coefficients at each of the
receive antennas over the duration of KGM2

t symbols
transmission. Since under this condition it is not possible to
obtain higher diversity, which is required for achieving a
better performance, we need to maximise the CA by using
the most uncorrelated coefficients for the KGM2

t symbols.
Interleaving the rows of the STFBC codeword is a

reasonable answer to this problem. From a survey of recent
literature, the method used for interleaving STFBCs is to
permute the rows of each OFDM block. For SFBCs this is
the only possible way out, but for STFBCs there are other
options. In this section, we first show how existing
interleaving methods work and then propose a simple
scheme, which brings about a significant improvement in
STFBCs.
In a MIMO-OFDM system, correlation of the channel

frequency response occurs at different subcarriers because
of the DFT procedure. By permuting active subcarriers
corresponding to each block, the transmit data consisting of
the same symbol experience fading coefficients whose
values are very different. This permutation method
improves the CA of SFBCs.
The channel frequency response vector between the ith

transmit antenna and the jth receive antenna at kth OFDM
block will be denoted by [7]

Hk
i, j = Hk

i, j 0( ) Hk
i, j 1( ) · · · Hk

i, j N − 1( )
[ ]T

(11)
317
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Hk

i, j can be decomposed as Hk
i, j = W Ak

i, j, with

W =
1 1 · · · 1

Wz0 Wz1 · · · WzL−1

..

. ..
. . .

. ..
.

W N−1( )z0 W N−1( )z1 · · · W N−1( )zL−1

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

N×L

(12)

where W = e−j2pDf , if all of the L delay paths fall at the
sampling instances of the receiver, W becomes part of the

DFT matrix, which is unitary, also Ak
i, j = ak

i, j 0( )
[

ak
i, j 1( ) · · ·ak

i, j L− 1( )]T which is related to the power
distribution of the channel impulse response [7].
The frequency correlation matrix between the ith transmit

antenna and the jth receive antenna can be calculated as

Ri, j = E Hk
i, jH

kH
i, j

{ }
= W Ak

i, jA
kH
i, j

{ }
WH

= Wdiag s2
0, s2

1, . . . , s2
L−1

( )
WH = RF

(13)

According to (9) and (10), in order to evaluate the
performance of an SFBC using the CA, we could consider
Gp0

matrix without losing the generality. Let us take the
case where p0 = 1. Now, to illustrate graphically the effect
of the permutation on SFBCs, we set K = 1. Fig. 1 displays
matrix R̂, where a space-frequency coded system with six
transmit antennas and a 2-ray equal power FS channel with
5 μs delay spread and N = 128 subcarriers is used. The
horizontal axis indicates the indices of the rows and
the columns of matrix R̂ and the vertical axis indicates the
absolute values of R̂. As can be seen, the fading
coefficients are highly correlated which, as argued above,
increases the CA.
Now, we can show that applying a simple permutation to

the coding system makes the subcarriers corresponding to
each block of the code fall apart. For example, in the
scenario under investigation, it is clear that R̂ lies within the
index set {1, 2, …, 12}, but after carrying out a simple
permutation the index set changes to {1, 6, 12, …, 67}
which in turn changes R̂, Fig. 2 depicts the effect of this
process.
Fig. 1 Frequency correlation between subcarriers corresponding to su
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Temporal correlation matrix represents the similarity
between the fading coefficients of different OFDM blocks.
In an extreme case of quasi-static channel, fading
coefficient values of each subcarrier stays constant for K
OFDM blocks. This means that under the circumstances
where the indexing of all K OFDM blocks is identical
symbols that contain the same data experience similar fading.
Temporal correlation in mth delay is

rK m( ) = E ak
i, j l( )ak+m

i, j l( )∗
{ }

(14)

Therefore temporal correlation matrix of size K ×K can be
written as

RT k, p
( ) = v k − p

( )
(15)

where v k − p
( ) = E ak

i, j l( )ap
i, j l( )∗

{ }
. Let us suppose rT =

rank RT

( )
with rT≤K. Then, we have: RT = VRT

LRT
VH
RT

which is derived from eigenvalue decomposition. Here, LRT
contains the rT non-zero eigenvalues and VRT

is the
corresponding K × rT eigenvector matrix. We assume ak

i, j l( ) =
1ak−1

i, j l( ) + qk
i, j l( ), where qk

i, j l( )
{ }

are i.i.d. zero-mean

complex Gaussian with variances2
l 1− 12
( )

, 0 ≤ 1 ≤ 1 [15].

4 Proposed permutation scheme

To the best of authors’ knowledge, permutation schemes
published to date for STFBCs offer more or less the same
structure, that is, the same permutation is applied to each
OFDM block. In all these cases, one parameter is defined
that represents the distance between each two rows of each
block of the codeword after permutation has been performed.
Taking a different approach from those in literature, we

propose another vector of parameters, namely Ks = {Ks1,
Ks2, …, KsK} where Ksi

∈ {1, 2, …, N}, which represents
the index of the first subcarrier assigned to the sub-block
G1

1 − G1
K for each of K OFDM blocks. Using a circular

shift, this indexing method would automatically apply to all
the sub-blocks Gp

k for p = 1, 2, …, N/Γ Mt and k = 1, 2, …,
K. Using the CA of the STFBC, optimum values for
b-block G1 without permutation

IET Commun., 2014, Vol. 8, Iss. 3, pp. 315–323
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Ksi
i = 1, 2, …, K, namely, K̂si

can be calculated and from the

result the set K̂s = K̂s1
, K̂s2

, . . . , K̂sK

{ }
is obtained which is

then utilised to construct a new STFBC codeword.
Since the structure of permutation is completely dependent

on the structure of STFBC, it is not possible to design a
general purpose algorithm. Nevertheless, in this section we
illustrate that how the proposed permutation scheme can
enhance the performance of STFBCs.
As discussed earlier, the diversity order and the CA are the

only two criteria which give an indication of the STFBCs
performance. It can be readily demonstrated that
permutation parameter of STFBCs does not have any effect
on their diversity order [7, 19]. A simple explanation is that
since permutation can be defined as multiplication of a
full-rank permutation matrix by the codeword, therefore,
rank of D̂ ◦ R̂ does not change. The CA, however, is
directly related to the permutation and this relationship
stems from the AC’s dependency on the non-zero
eigenvalues of D̂ ◦ R̂, where R̂ is a submartix of R with
indices which are determined by the code’s permutation
parameters.
Now, given the proposed permutation and also from (6) to

(10), the CA of STFBCs with proposed permutation can be
expressed as

CANP K̂s

( )
= min

∏v
i=1

ji

( )
(16)

and

K̂s = argmax CANP Ks

( )
(17)

where ξi’s are the non-zero eigenvalues of
(
D̂ ◦ R̂)

Ks
, the

superscript (.) Ks indicates that the first subcarrier of

sub-blocks G1
1 to G1

K are K̂s1
–K̂sK

, respectively, and Gp
1–G

p
K

are shifted down with the same values. The indices which
exceed the number of the subcarriers can then be mapped
to the remainder of their division by N.
It is obvious that selecting the Ks as a set of zeros with

cardinality of K, that is, Ks = 0 = {0, 0,…, 0} is as if the
proposed permutation scheme is not being used and from
IET Commun., 2014, Vol. 8, Iss. 3, pp. 315–323
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(16) we can just calculate the CA of STFBC using its
conventional structure, that is,. CANP(0).
Now, we investigate how the proposed permutation

improves the CA which in turn leads to better performance.

Theorem: denoting the CA in the proposed permutation as
CANP

(
K̂s

)
and that in conventional STFBCs as CANP(0), the

following inequality is satisfied

CANP

(
K̂s

) ≥ CANP 0( ) (18)

Proof: the proof for this theorem is straight forward, if

K̂s = argmax CANP Ks

( ) = 0 (19)

then CANP

(
K̂s

) = CANP 0
)(
, and if for any other set Ks

0

K̂s = argmax CANP Ks

( ) = K0
s (20)

then CANP

(
K̂s

)
. CANP 0

)(
. □

To illustrate how these new parameters must be added to the
structure of an STFBC, we apply the proposed algorithm to
[19] which is the latest STFBC in literature and then
examine the modified coding solution to see its effect on
performance. In fact, in Section 7, it will be shown that an
improvement of up to 3 dB can be achieved as a result of
this modification. Using the same guideline, the new
permutation method can also be applied to other STFBCs
and it is reasonable to expect to yield improved
performances. In the next section, a summary of STFBCs
developed in [19] is presented.
5 Summary of BCDD codes

In [19], a systematic construction for linear transform-based
STF (LT-STF) codes with high CA is presented. LT-STF
codes are the generalised form of codes in [7, 15, 20, 21].
319
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The LT-STF code, C, is a KN ×Mt matrix that is generated

as

C = G1x, G2 x, · · · , GMt
x

[ ]
(21)

where

x Mi

( ) = Vi s Mi

( )
, i [

[
1, Npart

]
(22)

where s is a vector of KN data symbols. The elements of
x Mi

( )
are combination of existing symbol at s Mi

( )
, and

Mi

{ }Npart

i=1
denotes any partition of {1, 2, …, KN}, Gi

{ }Mt

i=1
are mapping matrices of size KN× KN and constellation
precoder matrices Vi are Mi

∣∣ ∣∣× Mi

∣∣ ∣∣ that are used to
achieve diversity and raise the CA. In [19], for Vi the
Vandermonde structure is chosen.
There are two possible scenarios at the transmitter of a

MIMO-OFDM system; namely, when there is partial
channel state information (PCSI) (channel DPP and
temporal correlation) at the transmitter, and when channel
DPP and temporal correlation are unknown (no CSI).
Therefore, Mi

{ }Npart

i=1
and Gi

{ }Mt

i=1
are designed for the two

cases of partially known and of unknown CSI.
In [19], two families of STFBCs were proposed based on

the presence or absence of channel characteristics which,
for simplicity, we refer to them as BCDD as in [19]. Next
in this section, a brief description of BCDD is provided.

5.1 No CSI

In the absence of CSI, Mi

{ }Npart

i=1
and Gi

{ }Mt

i=1
are designed as

follows:
For i∈ [1, Npart], and j∈ [1, Mt],

{Ki, j

}
i, j is chosen as a

partition of [1, N ]. Ki, j =
{
li, j + ngdpi

}Leq−1

n=0 , in which gdpi
is the absolute difference between any two consecutive
elements of Ki, j and li, j = kgdpiL+ pMt + j with i− 1 =

kγdpi/Mt + p, p∈ [0, γdpi/Mt− 1], k [
[
0, N/

(
gdpiL

)− 1
]
,

let Bi, j = <K
l=1

{
l − 1( )N +Ki, j

}
and obtain Mi =

<
Mt
j=1 Bi, j (Npart = N/(LMt), Mi

∣∣ ∣∣ = KLMt).

We have Gm = Ik ⊗ Gm so that Ki,j result in

Gm = bIN/Mt
⊗ diag e +j2pl m−1( )/Mt[ ]{ }Mt−1

l=0

= bIN/Mt
⊗ diag e +j2pl/N m−1( )N/Mt[ ]{ }Mt−1

l=0

(23)

5.2 Partial channel state information

When CSI is known at the transmitter, K is chosen so that the
resulting RT is full-rank. In this case Mi is designed as
follows: Mi = <K

l=1 l − 1( )N + J i

{ }
, J i =

{
biLeqMt+

kgop + i− bi

( )}LeqMt−1
k=0 , bi =

⌊
i− 1( )/gop

⌋
gop.Gm Mi

( )
is

designed as G1 M1

( ) = IKLeqMt
, and

Gm M1

( ) = diag e−jwm, k
{ }K

k=1

( )
⊗ diag e−j2pngopum/N

{ }LeqMt−1

n=0

( )
, (24)

for m> 1, wm, k = 2π(m− 1)(k − 1)/K, and θm is chosen so that
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det S1 IMt
⊗ LRT

⊗ D
( )

S∗
1

[ ]
, as a part of CA obtained in

[19], and consequently CA is the maximum.

S = G1U , G2U , . . . , GMt
U

[ ]
so that S

(Bi,j

)
S Bi,l

( )[ ]∗
= 0, j, le 1, Mt

[ ]
, j = l, Si = S Mi

( )
, Si =

[
G1 Mi

( )
,

G2 Mi

( )
, . . . , GMt

Mi

( )]× IMt
⊗ U Mi

( )( )
, where

U = VRT
⊗W and W is a N × L vandermonde matrix, that

W p, q
( ) = e−j2p p−1( )tq−1/T and D = diag d2l

{ }L−1

l=0

( )
.

6 Modification of BCDD codes

The coding scheme described in the previous section is
capable of achieving full diversity of time, space and
frequency. To obtain a high CA, one must take care with
the construction of these LT-STF parts; namely,
constellation precoder matrices V i

{ }
i, mapping matrix

Gi

{ }Mt

i=1 and indexing set Mi

{ }Npart

i=1 .
The precoder design for fading channels is studied in [22–

24] and Vandermonde matrix, V
(
u1, u2, . . . , up

)
is

suggested to have a proper performance in cases of SF and
STF codes [7].
The indexing set Mi, unlike the other parts, is exclusive to

OFDMmodulated MIMO coded systems and mainly depends
on the characteristics of the channel. To the best of authors’
knowledge, Mi which is commonly employed for STFBCs
utilises the same structure for different OFDM blocks, that
is, the permutation applied to each OFDM block is the
same. In other words, Mi which have been proposed in
[19] permutes the same rows of the code in each OFDM
block.
Temporal correlation matrix can represent the similarity

between the fading coefficients of different OFDM blocks.
In an extreme case of a static channel, fading coefficient of
each subcarrier stays constant for K OFDM blocks. This
means that if the indexing of all K OFDM blocks is
identical, the symbols containing the same data experience
similar fading coefficients, which reduces the CA of
STFBC. Now, from latest literature on permutation, it is
obvious that these schemes do not decrease correlation
between different OFDM blocks, but only between different
subcarriers in each OFDM block. Therefore, what is
proposed in this study is a new Mi construction approach
for STFBC that to a great extent overcomes this challenge.
In this study, however, an innovative Mi construction
approach for STFBC is proposed that aims to overcome the
challenge. By adopting this model, in addition to frequency
correlation, correlation between different OFDM blocks
(temporal correlation) also decreases.
To pursue our goal, we focus on BCDD and use an

enhanced structure for M̃i to improve performance. In what
follows, we describe the design of a modified BCDD
(M-BCDD), and define indexing set for both PCSI and no
CSI.

6.1 No CSI

Using the definitions of last section, we construct
{Ki, j

}
i, j

in

the same manner.
{Ki,j

}
i, j

is chosen as a partition of [1, N ]

Ki, j = li, j + ngdpi

{ }Leq−1

n=0
(25)

and li,j = kgdpiLeq + pMt + j, i − 1 = kgdpi/Mt + p, where
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p [

[
0, gdpi/Mt − 1

]
, 0 [ 0, N/ g dpi L eq

( )( )− 1
[ ]

for

i∈ [1, Npart], j∈ [1, Mt].

Then B̃i,j is expressed as

B̃i, j =

<K
l=1 l − 2( )N + Ksl

+Ki, j

{ }
,

l − 1( )N + Ksl
+Ki, j . l × N

<K
l=1 l − 1( )N + Ksl

+Ki, j

{ }
,

l − 1( )N + Ksl
+Ki, j , l × N

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(26)

where Ksl is a vector of K parameters which represents the
effect of temporal correlation matrix on indexing set. Ks =

{Ks1
, Ks2

, … , KsK
}, 0≤Ks1

≤N.. M̃i = <
Mt
j=1 B̃i,j (Npart =

N/
(
LeqMt

)
, Mi

∣∣ ∣∣ = KLeqMt).
Fig. 4 BER against SNR for the 2-ray equal power channel model

Fig. 3 BER against SNR for the 2-ray equal power channel model
with delay spread 5 μs, No CSI
6.2 Partial channel state information

With same J i we have

J i = biLeqMt + kgop + i− bi

( ){ }LeqMt−1

k=0
,

bi = i− 1( )/gopgop, i [ 1, Npart

[ ] (27)

Then, the proposed set for M̃i is given by

M̃i =

<K
l=1 l − 2( )N + Ksl

+ J i

{ }
,

l − 1( )N + Ksl
+ J i . l × N

<K
l=1 l − 1( )N + Ksl

+ J i

{ }
,

l − 1( )N + Ksl
+ J i , l × N

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)

and Ks = {Ks1
, Ks2

, … , KsK
}, 0≤ Ks1

≤ N. It is worth
mentioning that the first entry of Ks, that is, Ks1

can be set
to zeros because the relative distance of Ks1

is important.
with delay spread 1 μs, No CSI
7 Simulation results

In this section, we provide the simulation results of BCDD
and M-BCDD for two scenarios of having channel
characteristics (PSCI) and when there is no knowledge
about the statistics of the channel at the transmitter (no
CSI). In both scenarios, total bandwidth of 1 MHz and
BPSK constellation are used to perform simulation and
evaluate the results.
Fig. 5 BER against SNR for the 2-ray equal power channel model
with delay spread [0, 3] μs, PCSI
7.1 No CSI

Considering a MIMO-OFDM system with two transmit
antennas and one receive antenna, 128 frequency tones and
an equal power 2-ray quasi-static channel with K = 2.
BCDD was constructed as in Section 5.1 and M-BCDD had
the structure introduced in Section 6.1.
Under these conditions, simulations for channels with 5

and 1 μs delay spreads were carried out. Fig. 3 plots BCDD
and M-BCDD for 5 μs delay spread with Ks = {0, 33} for
M-BCDD. Fig. 4 displays the results for 1 μs delay spread
channel in which Ks = {0, 50} for M-BCDD.
IET Commun., 2014, Vol. 8, Iss. 3, pp. 315–323
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7.2 Partial channel state information

Here, simulations were run for a 2-ray channel and a 4-ray
channel under the following set up.
Considering a quasi-static channel with delay profile:

t = 0, 3[ ]ms and power profile: D = diag 0.5, 0.5( ), using
two antennas at the transmitter and, one antenna at the
receiver, N = 128, Td = 128 μs, L = Leq = 2 and K = 2.
Optimisation for BCDD in this case results in θ = 6 and γop
= 32. Using the M-BCDD structure proposed in Section 6.2
for optimisation, we obtained θ = 14, γop = 32, Ks1

= 0 and
Ks2

= 63. In Fig. 5, the results for both BCDD and
M-BCDD are exhibited.
To simulate the 4-ray channel, we opted for the one used in

[19] for a nearly quasi-static situation where temporal
correlation e = 0.95, delays at t = 0, 5, 10, 15[ ]ms, and
power profile D = diag 0.25, 0.25, 0.25, 0.25( ), with two
antennas at the transmitter and one antenna at the receiver,
N = 64, Td = 64 μs, L = Leq = 4 and K = 2. Optimisation for
BCDD in this case resulted in θ = 20 and γop = 8 and using
the structure proposed in Section 6.2 for optimisation
M-BCDD, we obtained θ = 28, γop = 8, Ks1

= 0 and Ks2
= 36.

In Fig. 6, simulation result of both BCDD and M-BCDD is
presented.
As can be seen from Figs. 3 to 6, in all cases the proposed

method outperforms the BCDD effectively, the BCDD codes,
are the best existing SFBCs in the literature to the best of
author’s knowledge.
For example, from Fig. 1, at a bit error rate (BER) = 10−5

and for the channel with delay spread of 5 μs, the M-BCDD
achieve about 2 dB gains over the BCDD codes. Here, it is
also helpful to present the CA values for BCDD and
M-BCDD to back up the simulation results by confirming
the derivatives of Section 4. Since the channels are relatively
quasi-static, the CAs are very low, therefore, ratio of
BCDD’s CA to M-BCDD’s CA are tabulated in Table 1.
Fig. 6 BER against SNR for the 4-ray equal power channel model
with delay spread [0, 5, 10, 15] μs, PCSI

Table 1 CAs of BCDD and M-BCDD

No CSI –
5 μs

No CSI –
1 μs

PCSI –
2 ray

PCSI –
4 ray

CAM−BCDD

CABCDD
≃ 12 25 11 19
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From Table 1, it can be seen that the values are in agreement
with the simulation results of Figs. 3–6. As expected from
the results obtained in Section 4, the CA of the M-BCDD is
more than ten times greater than that of BCDD’s. Therefore,
it is confirmed the proposed permutation scheme is capable
of offering a higher CA value and therefore it gives superior
performance compared with latest STFBC solutions. In
addition, one can easily observe that the BER curves of both
BCDD and M-BCDD have similar slopes at high SNRs,
which means, as was discussed earlier, the proposed method
does not change the diversity order.

8 Conclusion

In this paper, we established that published permutation
methods for maximising the CA of STFBCs could not
satisfactorily fulfil the requirements when channel response
was correlated for different time slots. To overcome this
challenge, we introduced a novel permutation scheme which
exploited both temporal and frequency correlation matrices.
Theoretical analyses are presented to demonstrate the
superiority of proposed method to the published ones. The
proposed method also particularly used to form a
modification of BCDD codes. Finally, simulation results are
performed to confirm performance improvement of modified
BCDD over the conventional structure of BCDD codes.
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